Alterações climáticas e o Sistema Terrestre

Orfeu Bertolami, Frederico Francisco DFA/ Universidade do Porto

CITAÇÃO

Bertolami, O., Francisco, F. (2020) Alterações climáticas e o Sistema Terrestre,

Rev. Ciência Elem., V8 (04):051. doi.org/10.24927/rce2020.051

EDITOR

José Ferreira Gomes, Universidade do Porto

EDITOR CONVIDADO

João Lopes dos Santos Universidade do Porto

RECEBIDO EM

01 de novembro de 2020

ACEITE EM

02 de novembro de 2020

PUBLICADO EM

15 de dezembro de 2020

COPYRIGHT

© Casa das Ciências 2020.
Este artigo é de acesso livre,
distribuído sob licença Creative
Commons com a designação
CC-BY-NC-SA 4.0, que permite
a utilização e a partilha para fins
não comerciais, desde que citado
o autor e a fonte original do artigo.

rce.casadasciencias.org

Segundo o "Painel Intergovernamental sobre Mudanças Climáticas" (IPCC), criado em 1988 sob a chancela da Organização Meteorológica Mundial e do Programa das Nações Unidas para o Meio Ambiente, mudança ou alteração climática é uma variação a longo prazo, à escala da vida humana, estatisticamente significativa, dos parâmetros climáticos (temperatura, precipitação, ventos, nebulosidade e outros fenómenos climáticos) relativamente às médias históricas. Assim, entende-se que as alterações climáticas se referem à variação do clima à escala global, ou dos climas regionais da Terra durante um período que pode ir de décadas a milhões de anos.

Há um consenso científico generalizado de que as alterações climáticas observadas atualmente são devidas, direta ou indiretamente, à atividade humana que, desde o início da industrialização, começou a alterar significativamente a composição da atmosfera e a ocupação e utilização da superfície do planeta.

Há, no entanto, que salientar que o clima da Terra sempre sofreu alterações ao longo do tempo devido a causas naturais, sejam elas internas à Terra (vulcanismo, deriva dos continentes, movimentação de placas tectónicas, formação de montanhas, etc.) ou de origem astronómica (ciclos solares, variação dos parâmetros orbitais, impacto de meteoritos, etc.).

O Efeito de Estufa

Em termos médios, a temperatura da Terra depende do balanço entre a energia que a Terra recebe do Sol e aquela que emite de volta para o espaço. Existem alguns gases que, estando presentes na atmosfera, absorvem a radiação infravermelha proveniente do Sol e, sobretudo, a emitida pela superfície da Terra, e a voltam a emitir em todas as direções, contribuindo para que parte dessa energia seja absorvida pela superfície da Terra, em vez de ser refletida para o espaço. Esses gases são conhecidos como gases de efeito de estufa e incluem o vapor de água (H_2O) , dióxido de carbono (CO_2) , metano (CH_4) , óxido nitroso (N_2O) e ozono (O_3) , CFCs e outros. A presença natural destes gases, mesmo antes da Revolução Industrial, contribui para que a Terra tenha uma temperatura que permite a existência de água líquida à superfície. Caso contrário, a Terra seria cerca de 33°C mais fria do que a

média pré-industrial. A existência do efeito de estufa é conhecida, pelo menos, desde que foi proposta pelo físico e matemático francês Joseph Fourier, em 1824.

Com a Revolução Industrial, as sociedades humanas começaram a queimar grandes quantidades de combustíveis fósseis que se encontram armazenados nos depósitos minerais. Começando com o carvão no século XVIII e XIX, o petróleo generalizou-se a partir do início do século XX e o gás natural na segunda metade desse século. Além das implicações geopolíticas que a centralidade destes combustíveis trouxe, a sua utilização em quantidades cada vez maiores levou à libertação para a atmosfera de grandes quantidades de gases de efeito de estufa, principalmente, de ${\rm CO_2}$. Em 2013, a concentração de ${\rm CO_2}$ na atmosfera ultrapassou pela primeira vez desde que há registos as 400 partes por milhão (ppm) em volume, que compara com 270 ppm em média no período pré-industrial. Atualmente a concentração de ${\rm CO_2}$ é de 410 ppm em volume. De acordo com os dados que é possível obter dos furos de gelo e de outras formas de medição indireta, a concentação de ${\rm CO_2}$ na atmosfera da Terra é agora muito mais elevada do que em qualquer outro momento nos últimos 800 000 anos (FIGURA 1). Os dados dos núcleos de gelo também permitem confirmar com grande rigor a forma como a temperatura média global acompanha a concentração de ${\rm CO_2}$ na atmosfera terrestre, sendo este o principal gás de efeito de estufa a seguir ao vapor de água (que tem um efeito de *feedback*).

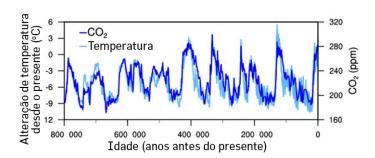


FIGURA 1. Variação da temperatura (azul claro) e da concentração de dióxido de carbono (azul escuro) medidos a partir do furo de gelo "EPICA Dome C", na Antártida¹.

Sendo o mais importante, o efeito de estufa não é o único mecanismo através do qual os humanos estão a alterar o clima do planeta. A intensificação da utilização do solo, com a desflorestação massiça, ou a libertação de partículas e aerossóis são outros fatores que provocam alterações climáticas e se combinam para que, em pouco mais de um século, se tenha aquecido o planeta em média em 1°C (FIGURA 2).

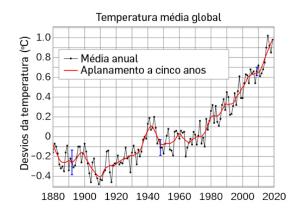


FIGURA 2. Evolução da temperatura média global entre 1880 e 2020, com média móvel de 5 anos (linha vermelha)².

O Sistema Terrestre: um Sistema Dinâmico Complexo

O aumento da concentração de gases de efeito de estufa na atmosfera desencadeia, também, um conjunto de reações à escala global que provocam alterações em todos os sistemas físicos, químicos e biológicos do planeta.

Um exemplo importante é o efeito que o aumento de concentração de CO_2 tem nos oceanos. A concentração de CO_2 na água do mar encontra-se em equilíbrio com a da atmosfera. Se a concentração atmosférica deste gás aumentar, uma percentagem significativa desse aumento é absorvida pelos oceanos. Por sua vez, isto altera os equilíbrios químicos da própria água do mar e torna-a mais ácida. A acidificação dos oceanos, se por um lado amortece o aumento dos gases de efeito de estufa na atmosfera, tem consequências muito negativas para a vida que os mares suportam. A este efeito acresce o aumento de temperatura da própria água do mar.

O aumento da temperatura também interfere nos ciclos das chuvas, provoca a fusão das calotes polares, modificando ecossistemas e reduzindo a refletividade da Terra (albedo), altera as correntes marinhas e a estratificação da coluna de água no mar, derrete os solos congelados (permafrost), aumenta o nível de humidade no ar, reduz a humidade do solo, modifica balanços energéticos e ciclos bioquímicos, intensifica fenómenos meteorológicos extremos e introduz várias outras modificações que interagem entre si, amplificando alguns dos efeitos e desencadeando novas causas. Todas estas mudanças no ambiente físico introduzem desequilíbrios progressivos na biologia e na relação entre as espécies de seres vivos, podendo, por exemplo, expor as populações a agentes patogénicos com os quais não teriam contacto de outra forma.

Acresce ainda que muitos dos mecanismos conhecidos têm ciclos de retroação (feedback loops). Por exemplo, a fusão dos solos congelados na Sibéria e noutras regiões circumpolares poderá provocar a libertação de grandes quantidades de metano (CH₄) que se encontra retido no gelo. O metano é um gás de efeito de estufa bastante mais eficaz do que o CO₂. Atualmente a concentração de metano é cerca de duzentas vezes menor que a concentração de CO₂.

A grande maioria dos seres vivos não será capaz de evoluir modificando a sua biologia a tempo de acompanhar a mudança dos sistemas físicos onde vive, dando origem a uma extinção em massa que, tudo indica, já está em curso.

Mantendo-se o ritmo das mudanças observadas, estas aprofundar-se-ão significativamente e provocarão grandes disrupções no funcionamento das sociedades humanas. Muitas cidades costeiras serão inundadas, regiões húmidas e com neve abundante poderão tornar-se mais quentes e secas, os leitos de alguns rios e lagos poderão secar; as secas aumentarão prejudicando as colheitas, as reservas de água potável para consumo, higiene, agricultura e produção de alimentos poderão diminuir; poderá ocorrer a extinção de muitas espécies animais e vegetais; certos fenómenos climáticos extremos, como furacões, tornados e outras tempestades, determinados por alterações de temperatura e no mecanismo de evaporação da água, poderão tornar-se mais frequentes.

Pode-se facilmente imaginar a repercussão catastrófica de um cenário desta natureza e com tais consequências sobre a espécie humana e as sociedades. A nível social, a repercussão já é visível na economia, na política, na saúde, no abastecimento e na segurança social, entre outras áreas. Não é provável que qualquer área da sociedade ou qualquer região do planeta venha a ser poupada a significativas dificuldades, se as tendências per-

manecerem inalteradas, muito embora a distribuição dos impactos possa ser muito assimétrica, sendo expectável um maior impacto em geografias mais vulneráveis, acentuando, e criando novas desigualdades sociais.

A Emergência do Antropocénico

Por todas as razões enunciadas, faz sentido enquadrar o estudo das alterações climáticas numa abordagem que considere como objeto de análise o Sistema Terrestre, o sistema resultante da integração e das relações recíprocas associadas à Atmosfera, à Biosfera, à Criosfera, à Hidrosfera, à Litosfera Superior. Neste contexto, é possível verificar que as alterações causadas pelo homem relativamente às condições de referência dos últimos 11700 anos, a época geológica conhecida como o Holocénico, sugerem uma nova época geológica emergente: o Antropocénico^{3, 4, 5}.

A abordagem sistémica do Sistema Terrestre sugere que o estudo do impacto das atividades humanas sobre o planeta se faça através de um conjunto de variáveis de estado, as chamadas Fronteiras Planetárias (*Planetary Boundaries*, FIGURA 3)⁶.

Foram identificadas, pelo menos, dez variáveis relevantes: alterações climáticas; perda de biodiversidade e extinção de espécies; destruição do ozono estratosférico; acidificação dos oceanos; fluxos bio-geoquímicos associados aos ciclos do fósforo e do azoto; destruição de ecossistemas primordiais; utilização da água doce; carga atmosférica de aerossóis; poluição química, radioativa, de nano-materiais e micro-plásticos. Nesta base, podem então ser definidos limites acima dos quais resultam perturbações graves ao funcionamento do Sistema Terrestre. A observação, em 2015⁵, de que quatro das Fronteiras Planetárias (alterações climáticas, perda de biodiversidade e extinção de espécies, fluxos bio-geoquímicos associados aos ciclos do fósforo e do azoto e alterações nos solos) já foram ultrapassadas sugere que medidas de mitigação devem ser urgentemente desenhadas e implementadas.

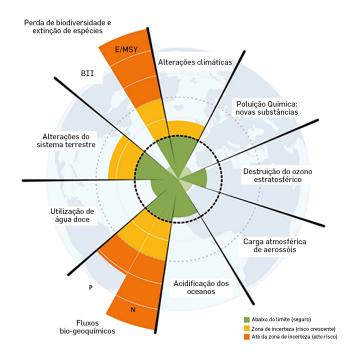


FIGURA 3. Fronteiras Planetárias: a verde a zona de segurança, a amarelo e laranja aquelas em que já foi ultrapassado esse limite.

Por outro lado, a importância destas transformações e das suas implicações em todas as esferas da atividade humana, impulsionou a emergência de uma nova ciência, a Ciência do Sistema Terrestre⁷, e o surgimento de modelos físicos^{8, 9, 10} para o descrever, que permitam desenhar estratégias para sua gestão e regulação¹¹, e onde se constata a necessidade de construir comunidades resilientes^{12, 13}.

Os modelos do Sistema Terrestre sugerem que a ação humana pode deslocar irreversivelmente o ponto de equilíbrio desse sistema para uma região de onde será muito difícil retroceder (FIGURA 4).

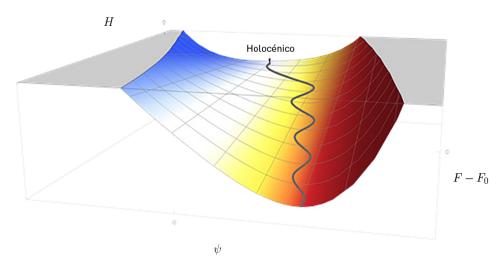


FIGURA 4. Diagrama de estabilidade do Sistema Terrestre e a sua trajetória das condições estáveis do Holocénico para um novo equilíbrio onde a temperatura média é necessariamente mais elevada. Neste diagrama, F, representa a energia livre, H, a atividade humana, ψ , a diferença de temperatura com relação a temperatura média no Holocénico^{7, 14}.

As questões associadas às alterações climáticas têm um impacto tão vasto sobre o funcionamento das sociedades humanas e a forma como nos relacionamos com outros seres vivos, que a participação de outras vertentes do conhecimento, muito particularmente, a filosofia e as ciências sociais, se torna indispensável^{15, 16}.

REFERÊNCIAS

- ¹NOAA, <u>Temperature Change and Carbon Dioxide Change</u>.
- ²NASA & GISS, <u>Surface Temperature Analysis</u>.
- ³ CRUTZEN, P. J. & STOERMER, E. F., *The Anthropocene*, Global Change Newsletter, 41, 17-18. 2000.
- ⁴STEFFEN, W. et al., <u>The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature?</u>, Ambio, 36, (8), 614-621. 2007.
- ⁵STEFFEN, W. et al., <u>The emergence and evolution of Earth System Science</u>, Nature Reviews Earth & Environment, 1, 54–63, 2020
- ⁶ROCKSTRÖM, J. et al., <u>Planetary boundaries: exploring the safe operating space for humanity,</u> Ecology and Society, 14, 2: 32. 2009.
- ⁷STEFFEN, W., et al., <u>Planetary boundaries</u>: <u>Guiding human development on a changing planet</u>, <u>Science</u>, 347: 736. 2015.
 ⁸BERTOLAMI, O. & FRANCISCO, F., <u>A physical framework for the Earth system</u>, <u>Anthropocene equation and the great acceleration</u>, <u>Global Planet</u>. Change, 169, 66-69. 2018.
- ⁹BERTOLAMI, O. & FRANCISCO, F., <u>A phase space description of the Earth system in the Anthropocene</u>, *EPL (Europhysics Letters)*, 127, 5, 59001. 2019.
- 10 BARBOSA, M. et al., Towards a physically motivated planetary accounting framework, The Anthropocene Review, DOI: 10.1177/2053019620909659. 2020.
- ¹¹ BERTOLAMI, O. & FRANCISCO, F., <u>A Digital Contract for the Earth System Restoration Mediated by a Planetary Boundary Exchange Unit.</u> 2020.
- ¹² GONÇALVES, C. & BERTOLAMI, O., *Pandemias. riscos. crises: a importância de investir em comunidades resilientes*, *Público*, 8 junho. 2020.
- ¹³GONÇALVES, C. & BERTOLAMI, O., Anthropic risks, Coronavirus pandemic (COVID-19), climate change (& other disas-

ters): An attempt to reach public perception. 2020.

 $^{^{14} {\}sf STOCKHOLM}$ RESILIENCE CENTRE, $\underline{\textit{Planetary boundaries research}}.$

¹⁵ MALDONADO, M., <u>Antropocénico, La política en la era humana,</u> Penguin Randon House, Madrid. 2018.

¹⁶ MENDES, J. & SYLLA, B., EIBEA 2019, Encontro Iberoamericano de Estudos do Antropocénico, Livro de Atas.