Dinâmica de metapopulações em regiões áridas

Marisa Naia, José C. Brito CIBIO/ InBIO/ Universidade do Porto

A fragmentação dos habitats naturais e as alterações climáticas promovem o isolamento populacional e um aumento do risco de extinção, estando por isso entre os principais fatores responsáveis pela perda de biodiversidade. A conectividade da paisagem assegura a dispersão de indivíduos e o fluxo génico, mitigando os efeitos negativos promovidos pela fragmentação e assegurando a dinâmica e a respetiva persistência de metapopulações. As montanhas da Mauritânia contêm lagoas que funcionam como refúgios climáticos para espécies aquáticas. Durante a estação seca, os rios que interligam essas lagoas interrompem-se e impossibilitam o movimento de indivíduos, mas durante a estação das chuvas, quando a disponibilidade de água aumenta, movimentos de dispersão inter-lagoas garantem o fluxo génico e a subsistência das espécies. Esta dinâmica metapopulacional permite mitigar os efeitos negativos do isolamento populacional e garantir a sobrevivência de espécies aquáticas em regiões áridas.

A fragmentação dos habitats naturais é um dos principais fatores que conduz à perda de biodiversidade¹, criando uma matriz de pequenas manchas de habitat isolados onde as populações persistem². Este isolamento contribui para a diminuição do fluxo génico (migração de genes entre populações), o que leva à diminuição da viabilidade das populações através do aumento da consanguinidade, da redução da diversidade genética e da capacidade de adaptação dos indivíduos (FIGURA 1)³. As alterações climáticas amplificam estes efeitos porque criam condições ambientais que podem estar para além da tolerância fisiológica das espécies, com consequências negativas, por exemplo na sobrevivência ou no sucesso reprodutor⁴. Por isso, tanto a fragmentação dos habitats como as alterações climáticas levam ao declínio das populações e à extinção de espécies quando estas são incapazes de se adaptarem às novas condições ou têm uma baixa capacidade de dispersão⁵.

CITAÇÃO

Naia, M., Brito, J. C. (2020) Dinâmica de metapopulações em regiões áridas,

Rev. Ciência Elem., V8 (04):059. doi.org/10.24927/rce2020.059

EDITOR

José Ferreira Gomes, Universidade do Porto

EDITOR CONVIDADO

João Lopes dos Santos Universidade do Porto

RECEBIDO EM

01 de junho de 2020

ACEITE EM

08 de setembro de 2020

PUBLICADO EM

15 de dezembro de 2020

COPYRIGHT

© Casa das Ciências 2020.
Este artigo é de acesso livre,
distribuído sob licença Creative
Commons com a designação
CC-BY-NC-SA 4.0, que permite
a utilização e a partilha para fins
não comerciais, desde que citado
o autor e a fonte original do artigo.

rce.casadasciencias.org



FIGURA 1. Esquema simplificado dos diferentes efeitos da fragmentação dos habitats naturais nas espécies e populações, os quais conduzem a um aumento do risco de extinção. A conectividade da paisagem como uma medida para mitigar os efeitos negativos da perda do habitat está representada pela seta verde.

A conectividade da paisagem facilita o movimento de indivíduos entre diferentes locais⁶. Por um lado, a conectividade estrutural foca-se na configuração espacial da paisagem, avaliando a continuidade física do habitat, tais como corredores, sem considerar os aspetos biológicos da paisagem⁷. Por outro lado, a conectividade funcional considera o comportamento das espécies perante a paisagem, avaliando a capacidade de dispersão dos indivíduos e estimando quais os corredores utilizados entre habitats isolados⁸. Uma rede coesa de corredores que interliguem habitats adequados à persistência através de zonas desfavoráveis permite tanto os movimentos de indivíduos entre as diferentes populações isoladas como facilita a potencial colonização de novos habitats, permitindo assim a dinâmica de metapopulações. Esta dinâmica resulta do equilíbrio entre extinção e colonização de populações, o qual é mantido através do movimento de indivíduos entre populações⁹. A migração conduz a um aumento periódico na entrada de novos genes de populações adjacentes, o que contribui para o aumento da variabilidade genética e do potencial de adaptação a alterações ambientais, diminuindo assim o risco de extinção (FIGURA 1)¹⁰.

Em ecossistemas aquáticos, a conectividade é essencialmente assegurada através da rede hidrográfica. As espécies aquáticas movem-se na paisagem através dos rios, de forma ativa ou passiva, colonizando novos habitats favoráveis e alcançando novas populações, sendo responsáveis pela dinâmica metapopulacional¹¹. A conectividade hidrológica da paisagem é particularmente importante em regiões áridas, onde a disponibilidade de água nos rios é fortemente sazonal¹². Consequentemente, a dispersão está restrita à época das chuvas, quando a rede hidrográfica está conectada. No entanto, a disponibilidade da água pode igualmente flutuar anualmente devido às oscilações climáticas, resultando em períodos de seca que impossibilitam a dispersão através dos rios. Estes fenómenos são particularmente evidentes no Sael, uma ecoregião que se estende por 3 000 000 km² entre o Deserto do Saara a norte e as savanas sub-húmi-

das a sul¹³. Esta região experienciou fortes oscilações climáticas desde o Pleistoceno, as quais modificaram os habitats existentes¹³. No último período húmido (há cerca de 4000 anos), prados e mega-lagos cobriam grande parte do atual Sael, mas estes contraíram-se à medida que a precipitação diminuiu e a região aridificou¹⁴. Estas oscilações climáticas e as mudanças no coberto vegetal tiveram consequências na distribuição das espécies, contribuindo para o isolamento de populações e, por vezes, para a diversificação de novas formas¹⁵. Atualmente, espécies adaptadas a ecossistemas aquáticos persistem em refúgios climáticos, habitats isolados que reúnem as condições favoráveis para a sobrevivência das espécies, muitas vezes retendo água durante todo o ano¹⁶. Estes frágeis sistemas são fortemente vulneráveis às alterações climáticas. A diminuição acentuada na precipitação prevista para o Sael poderá afetar a viabilidade de várias populações¹⁷.

As montanhas da Mauritânia atuaram como refúgio durante os ciclos climáticos passados, mantendo populações isoladas de espécies aquáticas numa região essencialmente árida¹⁵. Nestas montanhas encontram-se lagoas (conhecidas localmente como gueltas) com elevada riqueza biológica, concentrando espécies endémicas e ameaçadas, categorizando-se como hotspots locais de biodiversidade (FIGURA 2 A))¹⁶. Muitos gueltas retêm água durante a época seca, permitindo a persistência de espécies aquáticas durante todo o ano. É o caso do crocodilo-do-deserto (*Crocodylus suchus*), o qual persiste nos gueltas quando os rios e as zonas húmidas envolventes secam (FIGURA 2 B))¹⁸.

FIGURA 2. Refúgios climáticos na Mauritânia. A) guelta Tartêga na montanha do Tagant. B) Crocodilo-do-deserto (*Crocodylus suchus*) no guelta Tartêga.

Para esta e muitas outras espécies aquáticas, a conectividade entre gueltas é crucial para manter a dinâmica metapopulacional local e a respetiva viabilidade das populações. Durante a época das chuvas, os gueltas anteriormente isolados ficam conectados através da rede hidrográfica que se forma com o reaparecimento dos rios sazonais¹⁹. Desta forma, os crocodilos podem dispersar entre gueltas durante a época das chuvas e garantir o fluxo génico entre as diferentes populações, maioritariamente isoladas nas lagoas (FIGURA 3)²⁰.

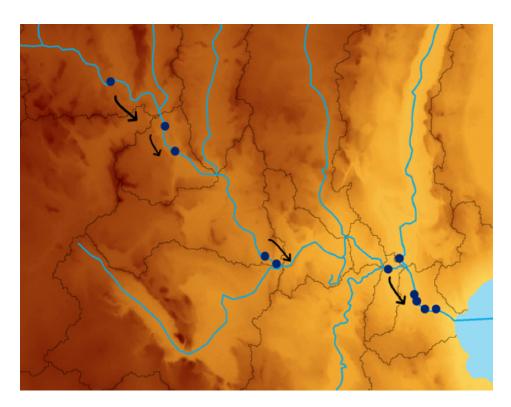


FIGURA 3. Esquema simplificado de um sistema de metapopulacional nas lagoas montanhosas da Mauritânia. A migração de indivíduos é representada pelas setas, a qual tem por norma o sentido montante para jusante.

Ao longo de várias gerações, alguns indivíduos conseguem atingir o rio Senegal, o único rio permanente na Mauritânia, garantindo a sobrevivência das populações a jusante¹⁸. Assim, as populações montanhosas funcionam como fonte de novos genes, à medida que os indivíduos dispersam entre gueltas ao longo da rede hidrográfica. Consequentemente, a dispersão atenua os efeitos do isolamento populacional, contribuindo para a manutenção da diversidade genética local e da capacidade de adaptação às alterações climáticas, diminuindo assim o risco de extinção local^{8, 20}. Tal como no caso dos crocodilos, diversas espécies de anfíbios e peixes²¹ mantêm sistemas metapopulacionais nas diferentes montanhas, dependentes da conectividade hidrográfica para a persistência. Estes locais são também importantes pontos de paragem durante a migração de algumas espécies de aves, como no caso da cegonha-preta (Ciconia nigra)²².

A biodiversidade presente nos refúgios climáticos em zonas áridas enfrenta diversas ameaças que colocam em causa a viabilidade das populações encontrada nestes locais. O aumento da intensidade e frequência de fenómenos extremos relacionados com as alterações climáticas, bem como o aumento das atividades humanas, ameaçam a persistência de muitas espécies¹⁵. Por isso, a proteção destes locais e dos corredores que asseguram a conectividade entre populações isoladas é essencial para garantir a sobrevivência destas populações e reduzir a vulnerabilidade às alterações climáticas⁸.

REFERÊNCIAS

¹BASCOMPTE, J. & SOLÉ, R. V., <u>Habitat fragmentation and extinction thresholds in spatially explicit models</u>, J. Anim. Ecol., 65:465-473, 1996.

²HADDAD, N. M. et al., <u>Habitat fragmentation and its lasting impact on Earth's ecosystems</u>, Sci. Adv., 1:e1500052. 2015. ³FRANKHAM, R., <u>Genetics and extinction</u>, Biol. Conserv., 126:131–140, 2005.

⁴TLI, D. et al., <u>Vulnerability of the global terrestrial ecosystems to climate change</u>, Glob. Chang. Biol., 24: 4095-4106. 2018.

- ⁵THOMAS, C. D., et al., <u>Extinction risk from climate change</u>, Nature, 427:145–148. 2004.
- ⁶ TAYLOR, P. D. et al., Connectivity Is a Vital Element of Landscape Structure, Oikos, 68:571-573. 1993.
- ⁷TISCHENDORF, L. & FAHRIG, L., <u>On the usage and measurement of landscape connectivity</u>, Oikos, 90:7–19. 2000.
- ⁸ TAYLOR, P. D. et al., Landscape connectivity: a return to the basics. In: Crooks, K. R., Sanjayan, M. (eds) Connectivity Conservation. Cambridge University Press, Cambridge, U.K., p 29–43. 2006.
- ⁹HANSKI, I., <u>Metapopulation dynamics</u>, Nature, 396:41–49. 1998
- ¹⁰ MECH, S. G. & HALLETT, J. G., *Evaluating the effectiveness of corridors: A genetic approach, Conserv. Biol.*, 15:467–474, 2001.
- ¹¹ PRINGLE, C. What is hydrologic connectivity and why is it ecologically important?, Hydrol. Process., 17:2685–2689. 2003.
- ¹² HERMOSO, V. et al., <u>Using water residency time to enhance spatio-temporal connectivity for conservation planning in seasonally dynamic freshwater ecosystems</u>, J. Appl. Ecol., 49:1028–1035. 2012.
- ¹³LE HOUÉROU, H. N., *The Rangelands of the Sahel*, *J. Range Manag.*, 33:41–45. 1980.
- ¹⁴ HOLMES, J. A., *Ecology: How the Sahara became dry, Science*, 320:752–753. 2008.
- ¹⁵ BRITO, J. C. et al., <u>Unravelling biodiversity, evolution and threats to conservation in the Sahara Sahel</u>, Biol. Rev., 89:215–231. 2014.
- ¹⁶ VALE, C. G. et al., <u>Overlooked mountain rock pools in deserts are critical local hotspots of biodiversity</u>, PLoS One, 10:e0118367. 2015.
- ¹⁷ ZENG, N., *Drought in the Sahel*, *Science*, 302:999–1000. 2003.
- ¹⁸ BRITO, J. C., et al., <u>Crocodiles in the Sahara Desert: An update of distribution, habitats and population status for conservation planning in Mauritania</u>, *PLoS One*, 6:e14734. 2011.
- ¹⁹ CAMPOS, J. C. et al., <u>Normalized difference water indexes have dissimilar performances in detecting seasonal and permanent water in the Sahara-Sahel transition zone</u>, *J. Hydrol.*, 464–465:438–446. 2012.
- ²⁰ VELO-ANTÓN, G., et al., <u>Should i stay or should i go? Dispersal and population structure in small, isolated desert populations of West African crocodiles</u>, *PLoS One*, 9:e94626. 2014.
- ²¹ DILYTB, J., et al., <u>Diversification and gene flow of tilapia species driven by ecological changes in lowland and mountain areas of southern Mauritania, Evol. Ecol.</u>, 34:133-146. 2020.
- ²² SHINE, T., <u>The Conservation Status of Eastern Mauritania's ephemeral wetlands and their role in the Migration and Wintering of Black Storks (Ciconia nigra)</u>, Aves, 40: 228–240. 2003.