# Modelos análogos

#### Crescimento de cristais

Maria de Jesus E. Reis, Rosa Medina de Sousa, Sara R. Santos Escola Básica de Freiria

O presente trabalho apresenta três atividades experimentais a desenvolver com alunos do 7.º ano, Ciências Naturais e/ou 11.º ano de Biologia e Geologia, com graus de profundidade e enquadramento distintos, que pretendem simular processos análogos aos que ocorrem na Natureza, nomeadamente o desenvolvimento de cristais em grutas e outras cavidades e espaços vazios, cársicos, quer sob a forma de estalactites e estalagmites, quer em solução aquosa. Para o efeito foram utilizadas substâncias químicas que habitualmente existem nos laboratórios das escolas (borato de sódio, sulfato de potássio e alumínio e bicarbonato de sódio). Descreve-se o modo como decorreram as atividades e os resultados obtidos, concluindo-se que as soluções de borato de sódio e de bicarbonato de sódio poderão ser utilizadas para demonstrar o processo de formação de cristais de calcite nas cavidades cársicas, enquanto a solução de sulfato de potássio e alumínio será mais indicada para simular o desenvolvimento de cristais em meio aquoso. Destaca-se a importância da utilização de modelos análogos no ensino da geologia.

Em maio de 2017, no âmbito da ação de formação "Geologia, uma ciência alicerçada na Física e na Química", fomos desafiadas a desenvolver atividades práticas que integrassem as referidas ciências. O documento "Aprendizagens essenciais" emanado pelo Ministério da Educação prevê que "os alunos se assumam como agentes ativos na construção do seu próprio conhecimento, pesquisando e organizando informação, analisando e interpretando dados, planificando e executando atividades práticas", sendo que "as atividades práticas devem ser valorizadas e consideradas como parte integrante e fundamental dos processos de ensino e de aprendizagem em todas as temáticas". Nesse sentido desenvolvemos e testámos três atividades experimentais, destinadas a alunos do 7.º ano, Ciências Naturais e/ou 11.º ano de Biologia e Geologia, para implementar em sala de aula. Com estas pretendemos simular processos análogos aos que ocorrem na Natureza, nomeadamente o desenvolvimento de cristais em cavidades cársicas, quer em ambiente aéreo sob a forma de estalactites e estalagmites, quer em solução aquosa (FIGURA 1). Optámos por escolher substâncias químicas que existem habitualmente nos laboratórios das escolas e que permitam analogias a substâncias associadas aos processos naturais de geodinâmica externa, em estudo.

#### CITAÇÃO

Reis, M. J. E., Sousa, R. M., Santos, S. R.(2021) Modelos análogos, *Rev. Ciência Elem.*, V9(03):057. doi.org/10.24927/rce2021.057

#### **EDITOR**

João Nuno Tavares Universidade do Porto

#### **EDITOR CONVIDADO**

Paulo Fonseca Universidade de Lisboa

#### **RECEBIDO EM**

05 de janeiro de 2021

#### **ACEITE EM**

13 de janeiro de 2021

#### **PUBLICADO EM**

15 de outubro de 2021

#### **COPYRIGHT**

© Casa das Ciências 2021.
Este artigo é de acesso livre,
distribuído sob licença Creative
Commons com a designação
CC-BY-NC-SA 4.0, que permite
a utilização e a partilha para fins
não comerciais, desde que citado
o autor e a fonte original do artigo.

#### rce.casadasciencias.org



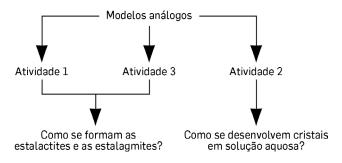



FIGURA 1. Esquema simplificado das atividades desenvolvidas.

#### Formação das grutas calcárias, das estalactites e das estalagmites

Os calcários são fundamentalmente formados por um mineral chamado calcite,  ${\rm CaCO_3}$  - carbonato de cálcio.

É a ação química das águas enriquecidas em dióxido de carbono que circulam nas zonas subterrâneas dos maciços calcários que, ao longo de milhões de anos, provoca a formação de galerias e cavidades que constituem as grutas – carbonatação (meteorização química) (FIGURA 2).

 $CaCO_3$  (calcite) +  $H_2CO_3$  (ácido carbónico) =  $Ca^{2+}$  +  $2HCO^{3-}$  (ião hidrogenocarbonato ou bicarbonato)

Como resultado desta reação surge bicarbonato de cálcio dissolvido na água. Em determinadas circunstâncias, como mudanças de pressão e/ou de temperatura por exemplo, os iões precipitam originando as estalactites e as estalagmites.

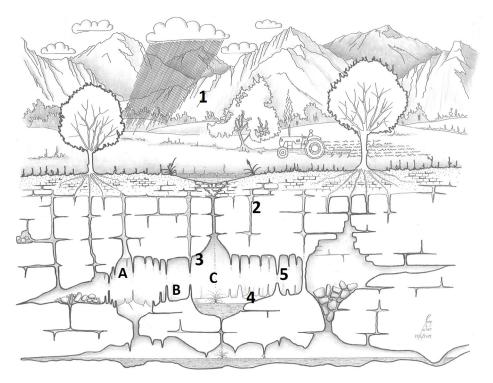



FIGURA 2. Corte esquemático de algumas formações do modelado cársico (grutas).

1. Quando chove, a água da chuva dissolve o dióxido de carbono existente na atmosfera e forma um ácido fraco (ácido carbónico). A acidez da água pode ser potenciada pelos ácidos húmicos resultantes da percolação da água na manta

morta (secção superficial do solo em que as folhas, raízes e restante matéria orgânica existem em abundância em climas temperados).

$$H_2O + CO_2 = H_2CO_3$$

2. A lenta circulação das águas aciduladas, pelas fendas, leva à dissolução do calcário (calcite).

$$H_2CO_3 + CaCO_3 = Ca(HCO_3)_2$$

Ao longo do tempo as fendas vão alargando e às vezes formam largos e longos canais subterrâneos onde há circulação da água (rios subterrâneos). As zonas mais alargadas correspondem às cavidades cársicas (cavernas, lapas, ...) (**C**).

3. As águas em circulação subterrânea contêm hidrogenocarbonato de cálcio Ca(HCO)<sub>2</sub> em solução. Quando ficam saturadas, ocorre a precipitação de calcite podendo levar à formação das estalactites (A).

$$Ca(HCO_3)_2 = CaCO_3 + H_2O + CO_2$$

- **4.** A contínua circulação da água leva a que os pingos ao caírem no fundo da gruta, precipitem o carbonato de cálcio e se deposite a calcite, formando sucessivas camadas que dão origem às estalagmites (**B**).
- **5.** Quando as estalactites e as estalagmites se unem, formam uma coluna, processo que pode demorar de muitos milhares a milhões de anos.

#### **Procedimento Experimental**

| Material de<br>laboratório                                                                                                                                   | Outros                                                                                 | Produtos utilizados                                                                                                                                                                                                                                                               | Corante<br>alimentar                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| <ul> <li>3 balões de fundo<br/>plano</li> <li>6 frascos de vidro</li> <li>3 tinas de vidro</li> <li>3 varetas de vidro</li> <li>3 caixas de Petri</li> </ul> | 3 cordões de algodão     3 tabuleiros     1 balança eletrónica     3 rolhas de cortiça | <ul> <li>60 g de borato de sódio Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>.10H<sub>2</sub>O</li> <li>370 g de sulfato de potássio e alumínio</li> <li>KAl(SO<sub>4</sub>)<sub>2</sub></li> <li>78 g de bicarbonato de sódio NaHCO<sub>3</sub></li> <li>3 litros de água</li> </ul> | <ul><li>Castanho</li><li>Azul</li><li>Vermelho</li></ul> |

As soluções 1, 2 e 3 foram preparadas com base em tabelas de solubilidade e garantiu-se a sua saturação: 1 - borato de sódio; 2 - sulfato de potássio e alumínio e 3 - bicarbonato de sódio.

|                      | Solução 1                                                                            | Solução 2                                                              | Solução 3                                    |
|----------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|
| Temperatura<br>(°C)  | 22                                                                                   | 50                                                                     | 22                                           |
| Solvente             | Água                                                                                 | Água                                                                   | Água                                         |
| Soluto               | Borato de sódio<br>Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> .10H <sub>2</sub> O | Sulfato de potássio e<br>alumínio - KAl(SO <sub>4</sub> ) <sub>2</sub> | Bicarbonato de<br>sódio - NaHCO <sub>3</sub> |
| Solubilidade em água | 60g/l                                                                                | 370g/l                                                                 | 78g/l                                        |
| Corante (10 gotas)   | Azul                                                                                 | Castanho alaranjado                                                    | Vermelho                                     |

#### Dia 1

Para cada uma das atividades procedeu-se do seguinte modo:

- 1. Preparou-se a solução adicionando a água, o reagente e o corante alimentar;
- 2. Demos um nó a meio do cordão;
- 3. Colocámos uma extremidade do cordão, previamente humedecido na solução, num frasco e a outra extremidade no outro frasco;
- 4. Adicionámos igual quantidade de solução nos dois frascos.





Dia 5







Dia 12 \*







Dia 26







Dia 37







<sup>\*</sup>Como a experiência foi efetuada à temperatura ambiente e esta subiu muito, entre os dias 5 e 12, houve necessidade de adicionar mais solução 2.

Solução 1 - observámos a formação de cristais em meio aquoso, no cordão e na caixa de Petri:

Solução 2 - observámos a formação de cristais essencialmente em meio aquoso e alguns no cordão e na caixa de Petri;

Solução 3 - observámos a formação de cristais no cordão e na caixa de Petri.

#### Discussão dos resultados

As soluções correm por adsorção ao longo do cordão verificando-se, à medida que a água evapora, a formação de cristais, por precipitação, no cordão, no fundo do frasco e na caixa de Petri.

Nas soluções 1 e 3, o crescimento de cristais ao longo do cordão e na caixa de Petri, pode constituir um modelo análogo à formação dos cristais de calcite (estalactites, estalagmites, travertinos, tufos calcários) nas grutas dos maciços calcários ou em locais onde possam circular águas ricas em carbonato de cálcio. As soluções 1 e 3 são as melhores para demonstrar esse processo.

Nas soluções 1 e 2, os sais dissolvidos na água cristalizam à medida que a solução se torna sobressaturada pela evaporação da água. Este crescimento de cristais dentro da solução poderá ser análogo à formação de cristais de selenite, como os existentes na gruta de Naica, no México¹.

Nota: deve-se utilizar cordão de algodão/fibras naturais. Com os cordões sintéticos corre-se o risco de não haver adsorção; devem-se utilizar corantes de cor clara o que permitirá observar mais facilmente o crescimento de cristais na solução.

#### Considerações finais

- A formação e desenvolvimento de cristais, quer em laboratório quer na natureza, implicam determinadas condições do meio. Os principais fatores externos que condicionam a formação dos cristais são a agitação do meio, o espaço disponível e a temperatura. A variação da temperatura/humidade ambiente poderá alterar a velocidade com que ocorre o processo, tal como na Natureza.
- Foi possível simular em laboratório, num curto intervalo de tempo (cerca de um mês) e de forma simples, a formação de cristais.
- Procurou-se, através das atividades experimentais apresentadas, estabelecer a analogia com a formação de estalactites e estalagmites das paisagens cársicas e com o desenvolvimento de grandes e espetaculares cristais, em condições particulares.
- Este tipo de atividade permite implementar um Domínio de Autonomia Curricular (DAC), opção curricular de trabalho interdisciplinar e articulação curricular, pois possibilita fazer a interseção de aprendizagens essenciais das disciplinas de ciências naturais, física e química e outras. Proporciona aos alunos a oportunidade de utilizar o método científico para pesquisar o mundo natural. Com base nas aprendizagens essenciais das disciplinas, será possível explorar diferentes percursos pedagógico-didáticos, em que se irá privilegiar o trabalho prático, o uso de ferramentas colaborativas *online*, o desenvolvimento das capacidades de pesquisa e análise, de forma a tornar as aprendizagens mais significativas. Podem ser explorados os conceitos de fórmula química de um sal ou os concei-

- tos de reação química, solução saturada, evaporação e precipitação, meteorização química das rochas, carbonatação, etc..
- Consideramos muito importante que desde cedo os alunos aprendam a relacionar as várias Ciências de forma holística e que interiorizem que, para estudar processos da natureza, precisam de recorrer a várias áreas do conhecimento científico.

#### **BIBLIOGRAFIA**

- <sup>1</sup> ANDRADE, G. P., *Ensino da Geologia, temas didáticos*, *Universidade Aberta*, Lisboa, 75. 1991.
- $^2$  DIAS DA SILVA, A. et al., Terra, Universo de Vida Geologia, Porto Editora, Porto, 208. 2018.
- <sup>3</sup> GALOPIM DE CARVALHO, A. M., *Ciências Naturais: geologia, Ano propedêutico*, Ministério da Educação, Secretaria de Estado do Ensino Superior, Direção Geral do Ensino Superior, Lisboa, 463. 1978.
- GALOPIM DE CARVALHO, A. M., Geología morfogénese e sedimentogénese, Universidade Aberta, Lisboa, 189. 1996.
- <sup>5</sup> CLEAVE, J. V., *Ciências da Terra para Jovens: 101 Experiências Fáceis de Realizar*, Col. Ciência para Jovens, Lisboa, Gradiva. 1993.
- <sup>6</sup> https://www.dge.mec.pt/sites/default/files/Curriculo/Aprendizagens\_Essenciais/3\_ciclo/ciencias\_naturais\_3c\_7a\_ff.pdf, acesso em julho de 2020.