Superfície cónica

Virgínia Amaral *, Elfrida Ralha †, Inês Sousa †, Cláudia Taveira ‡, Ângela Lopes ‡

- * Escola Secundária de Leal da Câmara
- † Universidade do Minho
- [‡] Escola Secundária/3 de Vila Cova da Lixa
- * virginiamaral@gmail.com

CITAÇÃO Amaral, V., Ralha, M.E., Sousa, I.,

Taveira, C., Lopes, A. (2014) Superfície cónica,

Rev. Ciência Elem., V2(01):022.

doi.org/10.24927/rce2014.022

EDITOR

José Ferreira Gomes, Universidade do Porto

RECEBIDO EM

16 de setembro de 2011

ACEITE EM

26 de maio de 2012

PUBLICADO EM

05 de junho de 2012

COPYRIGHT

© Casa das Ciências 2019.
Este artigo é de acesso livre,
distribuído sob licença Creative
Commons com a designação
CC-BY-NC-SA 4.0, que permite
a utilização e a partilha para fins
não comerciais, desde que citado
o autor e a fonte original do artigo.

rce.casadasciencias.org

Superfície Cónica é o lugar geométrico dos pontos P de coordenadas (x,y,z) definidos por uma equação (canónica) do tipo:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

com a,b,c constantes reais diferentes de zero.

Notas

A superfície cónica definida por $\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=0$ tem o vértice na origem de um referencial tridimensional, ortonormado (em relação ao qual se definiu a equação) e é simétrica em relação aos planos coordenados.

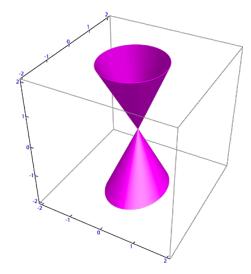


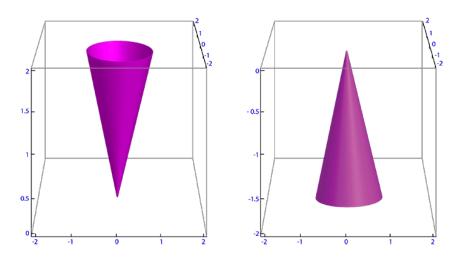
FIGURA 1. Superfície cónica definida pela equação $\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{25} = 0$.

Observe-se ainda que as equações (canónicas) $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$ ou $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ ou etc. (no primeiro membro, dois coeficientes com um sinal e o terceiro com sinal diferente) também representam superfícies cónicas de vértice em O, apesar de terem outro eixo.

Atendendo a que a equação inicial da superfície cónica $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ se pode escre-

REVISTA DE CIÊNCIA ELEMENTAR

ver na forma $z^2=c^2\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)$ ou ainda na forma equivalente $z=\pm\sqrt{c^2\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)}$, cada uma destas equações $z=\sqrt{c^2\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)}$ e $z=-\sqrt{c^2\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)}$ define uma **hemisuperfície cónica**, respetivamente, a superior e a inferior (relativamente ao plano coordenado *XOY*).



$$\text{FIGURA 2. Hemisuperfícies cónicas definidas, respetivamente, pelas equações } z^2 = \sqrt{c^2\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)} \text{e } z^2 = -\sqrt{c^2\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)} \text{e } z^2$$

As secções paralelas ao plano coordenado XOY são elipses (circunferências quando a=b, caso em que se tem um cone de revolução ou cone circular reto) definidas por $\frac{x^2}{a^2}+\frac{y^2}{b^2}=k$. As secções planas paralelas aos outros planos coordenados são hipérboles definidas por $\frac{x^2}{a^2}-\frac{z^2}{c^2}=k$ ou $\frac{y^2}{b^2}-\frac{z^2}{c^2}=k$.