REVISTA DE CIÊNCIA ELEMENTAR

Ião

Ricardo Ferreira Fernandes

Faculdade de Ciências da Universidade do Porto rmfernandes@alunos.fc.up.pt

CITAÇÃO

Fernandes, R.F. (2014) Ião, *Rev. Ciência Elem.*, V2(01):123. doi.org/10.24927/rce2014.123

EDITOR

José Ferreira Gomes, Universidade do Porto

RECEBIDO EM

8 de fevereiro de 2010

ACEITE EM

8 de setembro de 2010

PUBLICADO EM

13 de setembro de 2010

COPYRIGHT

© Casa das Ciências 2019.
Este artigo é de acesso livre,
distribuído sob licença Creative
Commons com a designação
CC-BY-NC-SA 4.0, que permite
a utilização e a partilha para fins
não comerciais, desde que citado
o autor e a fonte original do artigo.

rce.casadasciencias.org

O ião é um átomo ou uma molécula que adquire carga pelo ganho ou pela perda de eletrões. Um ião com carga positiva é denominado catião (e.g. Li⁺, NH₄⁺) e um ião com carga negativa é designado por anião (e.g. F⁻, CH₃COO⁻).

O termo ião deriva do grego e significa "o que vai"; tendo sido usado pela primeira vez por Michael Faraday, ¹ em 1834, para descrever as entidades (átomos ou moléculas), com carga positiva ou negativa, que se deslocavam durante os processos eletroquímicos em direção aos pólos (elétrodos, cátodo e ânodo). Posteriormente, Svante Arrhenius, na sua tese de doutoramento, em 1884, propôs que os ácidos, as bases e os sais, quando dissolvidos em água, se dissociavam nos iões de carga oposta que os constituíam.²⁻⁴ Inicialmente, a sua teoria não foi bem aceite, e, por isso, o seu doutoramento foi classificado com a nota mais baixa possível. No entanto, este trabalho levou a que lhe fosse atribuído, em 1903, o Nobel da Química.

Os iões apresentam funções fundamentais no funcionamento do organismo. Por exemplo, o catião cálcio (Ca²+) é essencial na constituição dos ossos e dentes. O cloreto de sódio (NaCl), um dos principais componentes iónicos do plasma sanguíneo, que apresenta uma concentração de 0.9 % em massa, é importante na regulação ósmotica do organismo. Por este motivo, uma das medidas clínicas efetuadas num paciente, quando este se encontra desidratado, ou perdeu muito sangue, é a administração de soro fisiológico (solução aquosa de 0.9 % m/m em NaCl) de modo a repor a concentração de eletrólitos no organismo.

No interior das células, o catião potássio (K⁺) encontra-se em concentração bastante superior (devido ao transporte ativo) do que o catião sódio (Na⁺) no plasma sanguíneo. Esta diferença de concentrações provoca um gradiente eletroquímico em toda a membrana celular que, por exemplo, é usado para gerar um sinal elétrico que regula o batimento cardíaco.

O catião ferro, em conjunto com a hemoglobina, transporta o oxigénio dos pulmões até às células. O anião carbonato (CO_3^{-2}) em equilíbrio com o anião hidrogenocarbonato (HCO_3^{-1}) , regula o pH do sangue, mantendo-o num intervalo entre 7.35 e 7.45.

REFERÊNCIAS

- ¹ http://www.chemteam.info/Chem-History/Faraday-electrochem.html
- ² http://nobelprize.org/nobel_prizes/chemistry/laureates/1903/arrhenius-bio.html
- ³ http://www.chemteam.info/Chem-History/Arrhenius-dissociation.html
- ⁴ http://www.chemheritage.org/classroom/chemach/electrochem/arrhenius.html