Magnetismo no dia-a-dia

Maria Margarida Cruz

BioISI/ Universidade de Lisboa mmcruz@fc.ul.pt

CITAÇÃO

Cruz, M.M. (2018) Magnetismo no dia-a-dia, *Rev. Ciência Elem.*, V6 (01):009. doi.org/10.24927/rce2018.009

EDITOR

José Ferreira Gomes, Universidade do Porto

EDITOR CONVIDADO

Luís Vítor Duarte, Universidade de Coimbra

RECEBIDO EM

06 de novembro de 2017

ACEITE EM

06 de novembro de 2017

PUBLICADO EM

14 de março de 2018

COPYRIGHT

© Casa das Ciências 2018.
Este artigo é de acesso livre,
distribuído sob licença Creative
Commons com a designação
CC-BY-NC-SA 4.0, que permite
a utilização e a partilha para fins
não comerciais, desde que citado
o autor e a fonte original do artigo.

rce.casadasciencias.org

O magnetismo é frequentemente associado apenas a interações entre ímanes ou entre um íman e um metal, quando na realidade está presente na maior parte dos dispositivos modernos. Para perceber como o magnetismo está presente na tecnologia e nos dispositivos elétricos que utilizamos, é útil realizar experiências. A intenção deste artigo é propor algumas experiências simples ilustrativas do comportamento magnético.

Para ilustrar o papel do magnetismo no dia-a-dia considere-se um equipamento elétrico que não funcione a pilhas.

Normalmente tem um transformador (na entrada liga a energia recebida da rede ao circuito interno) e pelo menos um motor (por exemplo, o que faz rodar uma ventoinha de arrefecimento). Um exemplo possível, é um computador onde se identifica facilmente no seu interior as duas componentes referidas, bem como o disco magnético para armazenamento de dados que também baseia o seu funcionamento no magnetismo.

Comecemos pela energia que chega ao equipamento. Eletricidade e magnetismo são indissociáveis. A produção de energia elétrica nas centrais térmicas, hidroelétricas, eólicas e nucleares é obtida com a variação periódica da orientação de um "íman" (uma bobine percorrida por corrente como veremos à frente) junto de uma bobine, B¹. Este movimento mecânico cria um campo magnético variável, a que corresponde um fluxo magnético variável que gera em B uma corrente alternada induzida (Lei de Faraday).

Pode observar-se este fenómeno usando a experiência seguinte: um íman suspenso de uma mola é colocado a oscilar junto de uma bobine (FIGURA 1).

Em cada oscilação o fluxo do campo magnético do íman através das espiras da bobine varia entre um valor elevado (íman no interior) e um valor baixo (íman no exterior) e induz uma diferença de potencial (d.d.p.) alternada na bobine. Ligando um osciloscópio aos terminais da bobine é possível observar essa d.d.p. (se em vez de ligar a bobine ao osciloscópio fechar o circuito com uma resistência, fluirá no circuito corrente elétrica alternada).

Note-se que a d.d.p. induzida, medida no osciloscópio, tem uma frequência igual à frequência própria da mola permitindo obter, a partir da medida do período, a constante elástica da mola, conhecida a massa suspensa, ou inversamente, determinar a massa se a constante elástica da mola for conhecida.

REVISTA DE CIÊNCIA ELEMENTAR

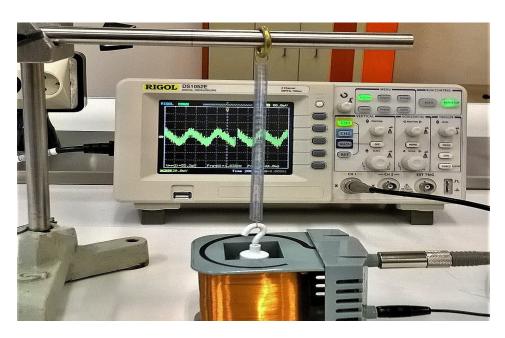


FIGURA 1. Um íman em oscilação entre o interior e o exterior de uma bobine e a d.d.p. entre os seus extremos observada num osciloscópio.

O funcionamento de um motor, movimento mecânico causado por um sinal elétrico, pode também ser ilustrado com a montagem anterior mas agora aplicando na bobine um sinal de tensão periódico e observando o movimento da mola. Neste caso, a amplitude de oscilação será maior quando a frequência da d.d.p. aplicada for próxima da frequência própria da mola, pois a transferência de energia elétrica para energia mecânica é maior neste caso.

O exemplo dado ilustra o funcionamento de um motor com movimento linear. Um rotor, motor em rotação, utiliza não a variação da intensidade do campo magnético na mesma direção do íman, mas a inversão periódica do sentido do campo magnético obrigando o íman a rodar para se alinhar com o campo. A inversão alternada do sentido impede que seja atingido o equilíbrio e mantém o íman e qualquer objeto a ele ligado em rotação².

As experiências referidas evidenciam que a bobine interatua com o íman e funciona como um íman quando percorrida por corrente elétrica — constitui um eletroíman. No eletroíman a intensidade do campo magnético pode ser variada. Pode mostrar-se que é proporcional à corrente elétrica que percorre o enrolamento, ao número de voltas da bobine e a uma característica do meio no interior da bobine que mede a capacidade deste ampliar o campo magnético da bobine — a permeabilidade magnética³. Um eletroíman simples pode ser obtido enrolando fio de cobre em torno de um cilindro de ferro. Para mostrar como varia o campo magnético de um eletroíman com o material no interior pode enrolar-se fio de cobre em torno de um tubo de plástico. Usando uma corrente elétrica constante no enrolamento e utilizando dois varões do mesmo diâmetro e material diferente (por exemplo, ferro e alumínio), é possível mostrar que apenas o varão de ferro é magnetizado quando colocado no interior do enrolamento, ampliando o campo magnético. Medindo a intensidade do campo com o número de clips que o varão consegue atrair, é possível mostrar que a força magnética aumenta proporcionalmente à corrente que percorre o fio enrolado (FIGURA 2).

REVISTA DE CIÊNCIA ELEMENTAR

FIGURA 2. Um eletroíman com varão de ferro no seu interior atraindo vários clips.

Se se colocar um varão comprido no interior do primeiro enrolamento com N_1 voltas, percorrido por corrente elétrica sinusoidal, e se se enrolar na extremidade livre do varão um segundo enrolamento, próximo do primeiro, pode verificar-se que é possível medir uma d.d.p. V_2 no segundo enrolamento com a mesma frequência do sinal do primeiro, sem que exista contacto elétrico entre os dois. Variando o número de voltas, N_2 , pode mostrar-se que a d.d.p no primeiro enrolamento, V_1 , se relaciona com V_2 por $V_1/V_2 \approx N_1/N_2$. Construiu-se um transformador.

Qualquer das experiências apresentadas pode ser realizada sem que seja necessário equipamento especial com exceção de um osciloscópio, um gerador do e um gerador ac.

REFERÊNCIAS

¹ https://en.wikipedia.org/wiki/Electricity_generation, acesso em Novembro 2017.

 $^{^2}$ SERWAY, R.A. e JEWETT, J.W., em Physics for Scientists and Engineers 6th ed. (College Text), Thomson-Brooks/Cole, cap. 31, 2004.

³ SERWAY, R.A. e JEWETT, J.W., em Physics for Scientists and Engineers 6th ed. (College Text), Thomson-Brooks/Cole, cap. 30, 2004.