REVISTA DE CIÊNCIA ELEMENTAR

As equações de Fresnel.

Eduardo Lage

U. Porto

As leis da ótica geométrica são completamente reproduzidas pelas condições cinemáticas do eletromagnetismo para ondas que incidam sobre uma superfície que divide dois meios distintos. Mas o eletromagnetismo vai mais longe porque fornece expressões bem definidas para as amplitudes relativas das ondas refletida e transmitida– são a equações de Fresnel (1823). Com base nelas, são estudadas a refletância e transmitância para diversos tipos de interfaces separando meios lineares, isotrópicos e não magnéticos, introduz-se o ângulo de Brewster e considera-se a pressão que a radiação exerce sobre um bom condutor.

Quando uma onda eletromagnética incide na superfície plana que separa dois meios diferentes, são originadas uma onda refletida e uma onda transmitida. Para uma onda incidente plana e monocromática, toda a dependência dos seus campos no espaço e no tempo é definida pelo fator:

$$e^{i\left(\vec{k}\cdot\vec{r}-\omega t
ight)}$$
 (1)

onde \vec{k} é o vetor de onda e ω a frequência angular. As condições de passagem no plano de separação (que se tomará para plano xz, com o eixo y perpendicular), são relações lineares entre componentes do campo e determinam que as três ondas têm a mesma frequência e a mesma componente do vetor de onda naquele plano¹:

$$k_x^{(i)} = k_x^{(r)} = k_x^{(t)}$$
(2)

Conhecidas as relações de dispersão² em cada meio, ficam completamente determinados os vetores de onda. Em particular, para a onda refletida, propagando-se no mesmo meio da incidente, a equação (2) impõe:

$$k_y^{(r)} = -k_y^{(i)}$$
 (3)

Isto é, o ângulo de incidência é igual ao ângulo de reflexão.

Admitir-se-á doravante que o meio onde se propaga a onda incidente é um dielétrico transparente (identificado por meio 1); quanto ao outro meio (meio 2), tanto pode ser outro dielétrico transparente como um condutor. Aceitando que nenhum dos meios é magnético, a relação de dispersão¹ é, genericamente:

$$\vec{k}^2 = \frac{\omega^2}{c^2} \left(\varepsilon_r + i \frac{\sigma}{\omega \varepsilon_0} \right) \tag{4}$$

CATEGORIA

Artigo

CITAÇÃO

Lage, E. (2023) As equações de Fresnel, **Rev. Ciência Elem.**, V11(03):029 doi.org/10.24927/rce2023.029

EDITOR

João Nuno Tavares Universidade do Porto

RECEBIDO EM 26 de abril de 2022

ACEITE EM 14 de junho de 2022

PUBLICADO EM 13 de outubro de 2023

COPYRIGHT

© Casa das Ciências 2023. Este artigo é de acesso livre, distribuído sob licença Creative Commons com a designação <u>CC-BY-NC-SA 4.0</u>, que permite a utilização e a partilha para fins não comerciais, desde que citado o autor e a fonte original do artigo

rce.casadasciencias.org

onde ε_r e σ são, respectivamente, a permitividade relativa e a condutividade do meio, uma e outra dependentes da frequência.

Os dielétricos são, em geral, isoladores ($\sigma = 0$), o que conduz à identificação do seu índice de refração:

$$\eta = \sqrt{\varepsilon_r} \tag{5}$$

Esta identificação justifica-se porque, para dois dielétricos em presença, a equação (2) origina a lei de Snell (FIGURA 1):

$$\eta_1 \mathrm{sen} \ \theta_i = \eta_2 \mathrm{sen} \ \theta_t \tag{6}$$

Para bons condutores $(\sigma \approx 10^7 \Omega^{-1} m^{-1})$ e para frequências óticas $\left(\nu \equiv \frac{\omega}{2\pi} \simeq 10^{14} s^{-1}\right)$ o termo $\frac{\sigma}{\omega \varepsilon_0} \sim 10^4$ na equação (4), pelo que pode ignorar-se a permitividade relativa, $\varepsilon_r \sim 1$. A onda transmitida é fortemente atenuada.

Neste artigo são deduzidas as relações entre as amplitudes dos campos e discutidas em detalhe as suas consequências para as duas naturezas limite do segundo meio. Estas relações são conhecidas por equações de Fresnel. Recorda-se que as ondas são transversais para meios lineares isotrópicos e que os campos elétrico, \vec{E} , e magnético, \vec{H} , satisfazem, genericamente, em cada meio, as seguintes equações:

$$\vec{k} \wedge \vec{E} = \mu_0 \omega \vec{H} \tag{7}$$

$$\vec{k} \wedge \vec{H} = -\omega \varepsilon_0 \left(\varepsilon_r + i \frac{\sigma}{\omega \varepsilon_0} \right) \vec{E}$$
 (8)

 $\operatorname{com} \varepsilon_0 \mu_0 c^2 = 1$ (c é a velocidade da luz no vazio).

Na superfície de separação, as relações de passagem, para além das equações (2), exigem a continuidade do campo magnético e da componente tangencial do campo elétrico, mas, como se verá, só há duas independentes.

Seja qual for o estado de polarização da onda incidente, é sempre possível considerar o seu campo elétrico como sobreposição de duas componentes, uma paralela ao plano de incidência e a outra perpendicular. Estes dois casos são tratados separadamente no que se segue.

Componentes paralelas.

A FIGURA 1 mostra as componentes paralelas do campo elétrico, também se identificando as componentes (perpendiculares) do campo magnético, dirigidas para cá (círculos negros), pelo que são nulas as suas componentes normais à superfície de separação (plano xz). Quanto à continuidade das componentes tangenciais do campo magnético, tem–se, pela equação (7):

$$k^{(i)} \left(E_i + E_r \right) = k^{(t)} E_t \tag{9}$$

onde

$$k^{(i)} = \frac{\omega}{c} \eta_1 \tag{10}$$

é a grandeza do vetor de onda comum para as ondas incidente e refletida.

FIGURA 1. Componentes paralelas do campo elétrico.

A continuidade da componente tangencial do campo elétrico dá:

$$(E_i - E_r)\cos\theta_i = E_t\cos\theta_t \tag{11}$$

É óbvio que as componentes normais do deslocamento elétrico, \vec{D} , são nulas pelo que é nula a densidade superficial de carga livre.

a) Admitindo que o meio 2 é, também, um dielétrico, então:

$$k^{(t)} = \frac{\omega}{c} \eta_2 \tag{12}$$

Assim, das equações (9) e (11) resultam as razões:

$$r_{\parallel} \equiv \frac{E_r}{E_i} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t} = \frac{\operatorname{sen} \left(2\theta_i\right) - \operatorname{sen} \left(2\theta_t\right)}{\operatorname{sen} \left(2\theta_i\right) + \operatorname{sen} \left(2\theta_t\right)}$$

$$t_{\parallel} \equiv \frac{E_t}{E_i} = \frac{\eta_1}{\eta_2} \frac{\operatorname{sen} \theta_i \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t} = \frac{2\operatorname{sen} \theta_t \cos \theta_i}{\operatorname{sen} \left(2\theta_i\right) + \operatorname{sen} \left(2\theta_t\right)}$$
(13)

Aqui, as últimas expressões obtiveram-se invocando a lei de Snell. Estes resultados são conhecidos por equações de Fresnel para as componentes paralelas.

Para incidência normal, tem-se simplesmente:

$$r_{\parallel} = rac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \qquad t_{\parallel} = rac{2\eta_1}{\eta_2 + \eta_1}$$
 (14)

Observando a expressão de $r_{||}$ na equação (13), conclui-se que esta razão se anula quando $\theta_i + \theta_t = rac{\pi}{2}.$

Tal ângulo de incidência é designado por ângulo de Brewster (1815), θ_B . Usando a lei de Snell, obtém-se:

$$tg\left(\theta_B\right) = \frac{\eta_2}{\eta_1} \tag{15}$$

Tem-se $\theta_B \approx 53^\circ$ para a água e $\theta_B \approx 56^\circ$ para o vidro. A discussão seguinte distingue os casos $\eta_1 < \eta_2$ e $\eta_1 > \eta_2$.

1. Para $\eta_1 < \eta_2$, por exemplo, interface ar ou vazio $(\eta=1)$ e água $\left(\eta=rac{4}{3}
ight)$ ou vidro

$$\left(\eta=rac{3}{2}
ight)$$
, a lei de Snell mostra que é sempre $heta_t < heta_i$ pelo que as equações (13) são reais.

2. Para $\eta_1 > \eta_2$, por exemplo, trocando os meios anteriores, existe um ângulo (de incidência) limite, θ_L para o qual é $\theta_t = \frac{\pi}{2}$. Invocando a lei de Snell, tem-se sen $(\theta_L) = \frac{\eta_2}{\eta_1}$ (note-se: $\theta_L > \theta_B$).

i) Para $heta_i \leq heta_L$ as equações 13 aplicam-se tal como estão escritas, verificando-se que, no ângulo limite, é $r_{\parallel} = 1$ e $t_{\parallel} = rac{\eta_1}{\eta_2}$.

ii) Para $\theta_i > \theta_L$ a lei de Snell conduz a um ângulo θ_t complexo, o que apenas significa que não pode mais ser interpretado geometricamente, apenas havendo necessidade de interpretar os resultados já obtidos. Na verdade, convém lembrar que $k^{(t)} \cos \theta_t \equiv k_y^{(t)}$ sendo fácil obter esta grandeza através da lei de dispersão:

$$k_{y}^{(t)} \equiv k^{(t)} \cos \theta_{t} = \sqrt{k^{(t)2} - (k^{(i)} \sin \theta_{i})^{2}} = \frac{\omega}{c} \sqrt{\eta_{2}^{2} - (\eta_{1} \sin \theta_{i})^{2}} = -i\frac{\omega}{c} \eta_{1} \sqrt{(\sin \theta_{i})^{2} - (\sin \theta_{L})^{2}}$$

O sinal é escolhido de modo a garantir que a onda transmitida atenua dentro do meio 2 (onde é y < 0) como decorre da equação (1). Assim:

$$\cos\theta_t = -i\frac{\eta_1}{\eta_2}\sqrt{(\sin\theta_i)^2 - (\sin\theta_L)^2} = -i\sqrt{\left(\frac{\sin\theta_i}{\sin\theta_L}\right)^2 - 1}$$
(16)

A atenuação da onda transmitida não se deve a qualquer processo dissipativo, como se mostrará a seguir. Usando o resultado anterior nas equações (13), conclui-se ser $|r_{||}| = 1$.

As amplitudes relativas para as ondas refletida e transmitida estão representadas nas FIGURAS 4 e 6.

b) Considere-se agora o caso de o meio 2 ser um bom condutor onde incide luz visível de modo que $\frac{\sigma}{\omega \varepsilon_0} \gg 1$. Nestas condições, a relação de dispersão para este meio fica:

$$k^{(t)2} \simeq \frac{\omega^2}{c^2} \left(i \frac{\sigma}{\omega \varepsilon_0} \right) \quad \to \quad \frac{k^{(i)}}{|k^{(t)}|} \simeq \frac{\eta_1}{\left(\frac{\sigma}{\omega \varepsilon_0} \right)} \ll 1 \tag{17}$$

Da lei de Snell tira-se:

$$\operatorname{sen}\theta_t = \frac{k^{(i)}}{k^{(t)}}\operatorname{sen}\theta_i \quad \to \quad \theta_t \simeq \frac{k^{(i)}}{k^{(t)}}\operatorname{sen}\theta_i$$
 (18)

Deste modo, a componente:

$$\left[\vec{k}^{(t)}\right]_{y} = -k^{(t)}\cos\theta_{t} \simeq -k^{(t)} = -\left(1+i\right)\frac{\omega}{c}\sqrt{\frac{\sigma}{2\omega\varepsilon_{0}}}$$
(19)

onde o sinal da parte imaginária é escolhido para caracterizar o amortecimento da onda transmitida no meio 2 (onde é y < 0, ver equação 1). Note-se que a amplitude da onda decresce exponencialmente, podendo considerar-se nula para uma distância

$$\delta \sim \frac{c}{\omega} \sqrt{\frac{2\omega\varepsilon_0}{\sigma}} \approx \frac{\lambda^{(\prime)}}{2\pi} \sqrt{\frac{2\omega\varepsilon_0}{\sigma}} \ll \lambda^{(i)}$$
, independente do ângulo de incidência: δ é o com-

primento de penetração. Este amortecimento é, evidentemente, devido a efeito Joule, sendo da nossa experiência comum sentir um metal quente quando exposto à luz solar. Se o meio 2 for

uma fina lamina do condutor (espessura $< \delta$), a lamina actua como um filtro redutor da luz incidente, um efeito utilizado nas viseiras de astronautas.

Das relações de Fresnel, obtém-se agora:

$$r_{\parallel} pprox 1$$
 $t_{\parallel} pprox rac{2k^{(i)}}{k^{(t)}}$
(20)

A onda refletida transporta, praticamente, toda a energia da onda incidente, como a seguir se mostra.

Fluxos de energia.

O vetor de Poynting:

$$\vec{S} = \vec{E} \wedge \vec{H} \tag{21}$$

determina o fluxo de energia através de qualquer superfície. Interessa aqui considerar apenas o plano (y = 0) que separa os dois meios em presença e onde são iguais as fases $k_x x - \omega t$ para as três ondas. É habitual considerar a média no tempo (sobre um período de oscilação) do vetor de *Poynting*, de modo que o fluxo incidente, para qualquer dos meios, no plano, é:

$$I = \left\langle \vec{S} \right\rangle \cdot (-\vec{e}_y) = -\left\langle S_y \right\rangle = -\frac{1}{2} \operatorname{Re} \left[\vec{E}^* \wedge \vec{H} \right]_y \text{ para } y = 0 \tag{22}$$

No meio 1, o campo é a sobreposição dos campos das ondas incidente e refletida. Contudo, é mostrado no Apêndice 1 que, naquele plano, o fluxo I é a soma algébrica dos fluxos incidente e refletido, *i.e.*,

$$I = I_i - I_r \tag{23}$$

com:

$$I_{i} = -\frac{1}{2} \operatorname{Re}\left[\vec{E}_{i}^{*} \wedge \vec{H}_{i}\right]_{y} = -\frac{1}{2\omega\mu_{0}} \left[\vec{E}_{i}^{*} \wedge \left(\vec{k}^{(i)} \wedge \vec{E}_{i}\right)\right]_{y} = \frac{k^{(i)}}{2\omega\mu_{0}} \left|\vec{E}_{i}\right|^{2} \cos\theta_{i}$$
(24)

$$I_r = \frac{1}{2} \operatorname{Re} \left[\vec{E}_r^* \wedge \vec{H}_r \right]_y = -\frac{1}{2\omega\mu_0} \operatorname{Re} \left[\vec{E}_r^* \wedge \left(\vec{k}^{(r)} \wedge \vec{E}_r \right) \right]_y = \frac{k^{(i)}}{2\omega\mu_0} \left| \vec{E}_r \right|^2 \cos \theta_i$$
(25)

onde se usou $\left| \vec{k}^{(i)} \right| = \left| \vec{k}^{(r)} \right|$ e $\theta_i = \theta_r$. Define-se o coeficiente de reflexão, ou refletância, por:

$$R_{\parallel} = \frac{I_r}{I_i} = \left| r_{\parallel} \right|^2 \tag{26}$$

com r_{\parallel} na equação (13), notando-se que este coeficiente se anula no ângulo de Brewster.

Analogamente, para o meio 2, tem-se:

$$I_{t} = -\frac{1}{2} \operatorname{Re} \left[\vec{E}_{t}^{*} \wedge \vec{H}_{t} \right]_{y} = -\frac{1}{2\omega\mu_{0}} \operatorname{Re} \left[\vec{E}_{t}^{*} \wedge \left(\vec{k}^{(t)} \wedge \vec{E}_{t} \right) \right]_{y}$$

$$= \frac{1}{2\omega\mu_{0}} \left| \vec{E}_{t} \right|^{2} \operatorname{Re} \left[k^{(t)} \cos \theta_{t} \right]$$
(27)

Define-se o coeficiente de transmissão, ou transmitância, por:

$$T_{||} = \frac{I_t}{I_i} = \left| t_{||} \right|^2 \operatorname{Re}\left[\frac{k^{(t)} \cos \theta_t}{k^{(i)} \cos \theta_i} \right]$$
(28)

No Apêndice 2 é demonstrada a conservação genérica da energia na interface, *i.e.*, a energia incidente reparte-se pelas ondas refletida e transmitida:

$$R_{\parallel} + T_{\parallel} = 1 \tag{29}$$

A) No caso de o segundo meio também ser um dielétrico com $\eta_2 > \eta_1$, obtém-se:

$$T_{\parallel} = \left| t_{\parallel} \right|^2 \operatorname{Re} \left[\frac{\eta_2 \cos \theta_t}{\eta_1 \cos \theta_i} \right]$$
(30)

Para $\eta_1 > \eta_2$, esta expressão mantém-se válida até ao ângulo limite, onde se anula, permanecendo nula para maiores ângulos de incidência para os quais é $\cos \theta_t$ imaginário puro.

Na FIGURA 5 estão representadas (a vermelho) a refletância e transmitância no caso da interface ar/vidro; na FIGURA 7, estas mesmas grandezas são representadas para a interface vidro/ar. B) No caso de o segundo meio ser um bom condutor, usando as equações (27) e (19), tem-se:

$$T_{\parallel} \simeq rac{4}{\eta_1 \cos \theta_i} \sqrt{rac{2\omega \varepsilon_0}{\sigma}} \ll 1$$
 (31)

Para a prata ($\sigma = 6, 2 \times 10^7 \Omega^{-1} m^{-1}$) obtém-se $R_{\parallel} \sim$ 95% para luz visível. A FIGURA 2 mostra a refletância de alguns metais (meio 1 é vazio ou ar) em função do comprimento de onda, para incidência normal. O súbito decréscimo da refletância na prata para $\lambda \simeq$ 300nm deve-se à existência de um *gap* no espectro eletrónico.

FIGURA 2. Refletância de alguns metais vs comprimento de onda, incidência normal.

Componentes perpendiculares.

A FIGURA 3 representa o plano de incidência, indicando-se, para as três ondas, as componentes perpendiculares do campo elétrico (pequenos círculos negros) e os respectivos campos magnéticos. Da continuidade das componentes tangenciais do campo elétrico, tira-se:

$$E_i + E_r = E_t \tag{32}$$

Quanto ao campo magnético, a continuidade das suas componentes tangenciais e a equação (7) dão:

$$k^{(i)} \left(E_i - E_r \right) \cos \theta_i = k^{(t)} E_t \cos \theta_t \tag{33}$$

A continuidade das componentes normais do campo magnético dá uma identidade quando se usa a lei de Snell.

Das duas equações acima, resulta:

$$r_{\perp} \equiv \frac{E_r}{E_i} = \frac{k^{(i)} \cos \theta_i - k^{(t)} \cos \theta_t}{k^{(i)} \cos \theta_i + k^{(t)} \cos \theta_t}$$

$$t_{\perp} \equiv \frac{E_r}{E_i} = \frac{2k^{(i)} \cos \theta_i}{k^{(i)} \cos \theta_i + k^{(t)} \cos \theta_t}$$
(34)

A partir daqui a discussão segue o que se fez para as componentes paralelas, prescindindo– -se, assim, de repetições ou pormenores irrelevantes.

FIGURA 3. Componentes perpendiculares do campo elétrico.

A) Se o meio 2 é, também, um dielétrico, as equações (34) reescrevem-se:

$$r_{\perp} = \frac{\eta_1 \cos \theta_i - \eta_2 \cos \theta_t}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_t} = \frac{tg\theta_t - tg\theta_i}{tg\theta_t + tg\theta_i}$$

$$t_{\perp} = \frac{2\eta_1 \cos \theta_i}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_t} = \frac{2tg\theta_t}{tg\theta_t + tg\theta_i}$$
(35)

tendo-se usado a lei de Snell para obter as últimas expressões. Para incidência normal, tem-se:

$$r_{\perp} = \frac{\eta_1 - \eta_2}{\eta_1 + \eta_2}$$

$$t_{\perp} = \frac{2\eta_1}{\eta_1 + \eta_2}$$
(36)

Comparando com a equação (14), a diferença de sinal nas expressões de r_{\perp} deve-se unicamente às convenções usadas nas FIGURAS 1 e 3 para medir positivamente os campos elétricos.

De notar que r_{\perp} nunca se anula. Assim, se a radiação incidente tiver, por exemplo, polarização elíptica, a radiação refletida sairá polarizada rectilineamente (perpendicular ao plano de incidência) para um ângulo de incidência igual ao ângulo de Brewster.

- 1. Se $\eta_2 > \eta_1$, é sempre $\theta_t < \theta_i$, pelo que $-1 < r_\perp < 0$.
- 2. Se $\eta_1 > \eta_2$, existe o ângulo limite para o qual é $r_\perp = 1$. Acima deste ângulo, r_\perp e t_\perp são complexos, com $|r_\perp| = 1$.

A refletância:

$$R_{\perp} = |r_{\perp}|^2 = \left| \frac{tg\theta_t - tg\theta_i}{tg\theta_t + tg\theta_i} \right|^2 \tag{37}$$

cresce com o ângulo de incidência para os dois casos anteriores, atingindo o valor $\cos^2(2\theta_B)$ no ângulo de Brewster e o valor unitário acima do ângulo limite no caso $\eta_1 > \eta_2$.

A transmitância:

$$T_{\perp} = |t_{\perp}|^2 \operatorname{Re}\left[\frac{k^{(t)} \cos \theta_t}{k^{(i)} \cos \theta_i}\right]$$
(38)

obedece, também, à equação (29), anulando-se a partir do ângulo limite no caso $\eta_1>\eta_2$.

Coeficientes de amplitude de Fresnel

FIGURA 4. Amplitudes de reflexão e transmissão na interface ar/vidro.

A FIGURA 4 representa as amplitudes relativas para a interface ar/vidro: reflexão (tracejado) e transmissão (cheio), vermelho para as componentes paralelas (p) e azul para as componentes perpendiculares (s).

Na FIGURA 5 são representadas a refletância e transmitância para a mesma interface, com a mesma identificação das curvas.

FIGURA 5. Refletâncias e transmitâncias para interface ar/vidro.

FIGURA 6. Amplitudes para reflexão e transmissão na interface vidro/ar.

Na FIGURA 7 representam-se as refletância e transmitância para a mesma interface.

B) No caso do meio 2 ser um bom condutor, θ_t obtém–se da equação (18), sendo $|\theta_t|\ll 1$, pelo que as equações (34) ficam:

$$r_{\perp} = \frac{\eta_1 \cos \theta_i - (1+i) \sqrt{\frac{\sigma}{2\omega\varepsilon_0}}}{\eta_1 \cos \theta_i + (1+i) \sqrt{\frac{\sigma}{2\omega\varepsilon_0}}} \sim -1 \qquad t_{\perp} = \frac{2\eta_1 \cos \theta_i}{\eta_1 \cos \theta_i + (1+i) \sqrt{\frac{\sigma}{2\omega\varepsilon_0}}} \sim 0$$
(39)

FIGURA 7. Refletâncias e transmitâncias para a interface vidro/ar.

Observe-se que, neste caso, o campo elétrico tem praticamente um nodo na interface com o condutor. A pequena transmitância é da mesma ordem da que se encontrou para a componente paralela, equação (31) e é nula para o perfeito condutor ($\sigma = \infty$). A FIGURA 8 exibe a refletância para algumas coberturas metálicas em espelhos.

Tem interesse calcular o momento do campo transferido para o plano separador. Considere-se o meio 1 como ar ou vazio, para simplificar, e o meio 2 condutor. Para incidência normal, o momento transferido em cada segundo, *i.e.*, a pressão exercida é a componente τ_{22} do tensor de Maxwell, obtendo-se:

$$\langle \tau_{22} \rangle = \langle u \rangle = \frac{1}{4} \varepsilon_0 \vec{E}^2 + \frac{1}{4} \mu_0 \vec{H}^2 = \frac{1}{4} \varepsilon_0 E_i^2 \left| 1 + r_\perp \right|^2 + \frac{1}{4} \varepsilon_0 E_i^2 \left| 1 - r_\perp \right|^2 = \frac{1}{2} \varepsilon_0 E_i^2 \left(1 + \left| r_\perp \right|^2 \right)$$

Para bons condutores, tem-se, numa excelente aproximação:

$$\langle \tau_{22} \rangle \approx \varepsilon_0 E_i^2$$
 (40)

Este valor é o dobro da pressão para a onda incidente– a pressão é exercida quer por esta onda que atinge a superfície quer pela onda refletida que empurra a superfície.

Para um ângulo de incidência, θ_i , genérico a pressão exercida obtém-se da equação (40) multiplicada por $\cos^2 \theta_i$.

A refletância da água, na sua fase sólida, é de enorme importância em Geofísica e para o aquecimento global (FIGURA 8).

Designa-se por albedo a percentagem de radiação que uma superfície ou um planeta reflete para o espaço. A figura mostra claramente a diminuição de albedo da Terra com o progressivo desapa-recimento de glaciares e gelos polares, um fenómeno que se reforça a si próprio pois quanto menos radiação é refletida tanto mais é retida, originando aumento da temperatura média do planeta.

FIGURA 9. Refletâncias da neve e gelo.

Apêndice 1.

O fluxo de energia como soma de fluxos na interface.

No meio 1, o campo é a sobreposição dos campos das ondas incidente e refletida, de modo que o vetor de *Poynting* fica:

$$\left\langle \vec{S} \right\rangle = \frac{1}{2} \operatorname{Re} \left[\vec{E}^* \wedge \vec{H} \right] = \frac{1}{2} \operatorname{Re} \left[\left(\vec{E}^*_i + \vec{E}^*_r \right) \wedge \left(\vec{H}_i + \vec{H}_r \right) \right] = \left\langle \vec{S}_i \right\rangle + \left\langle \vec{S}_r \right\rangle + \frac{1}{2} \operatorname{Re} \left[\vec{E}^*_r \wedge \vec{H}_i + \vec{E}^*_i \wedge \vec{H}_r \right]$$

Os dois últimos termos representam a interferência das duas ondas. Considerando apenas estes termos e para as componentes paralelas, eliminem-se os campos elétricos usando a equação 8, com $\sigma = 0$, para cada onda. Obtém-se:

$$\operatorname{Re}\left[\vec{E}_{r}^{*} \wedge \vec{H}_{i} + \vec{E}_{i}^{*} \wedge \vec{H}_{r}\right] = -\frac{1}{\omega\varepsilon_{0}\eta_{1}^{2}}\operatorname{Re}\left[\left(\vec{k}_{r} \wedge \vec{H}_{r}^{*}\right) \wedge \vec{H}_{i} + \left(\vec{k}_{i} \wedge \vec{H}_{i}^{*}\right) \wedge \vec{H}_{r}\right] = \frac{1}{\omega\varepsilon_{0}\eta_{1}^{2}}\operatorname{Re}\left[\vec{H}_{r}^{*} \cdot \vec{H}_{i}\right]\left(\vec{k}_{r} + \vec{k}_{i}\right)$$

onde se usou o facto de os campos magnéticos serem perpendiculares ao plano de incidência. Ora, pretende-se o fluxo de energia no plano de separação, *i.e.*, $-\langle \vec{S}_y \rangle$. A expressão anterior vai contribuir com um termo proporcional a $(\vec{k}_r + \vec{k}_i)_y = 0$ porque estes vetores de onda têm componentes de sinais opostos em relação à normal ao plano de separação. Deste modo, o fluxo de energia neste plano reduz-se à soma algébrica dos fluxos das ondas incidente e refletida. Para as componentes perpendiculares, eliminam-se os campos magnéticos no termo de interferência, obtendo-se o mesmo resultado.

Apêndice 2.

Conservação de energia na interface.

A) Para as componentes paralelas, reescreva-se a equação (22) para cada uma das ondas, soba forma:

$$I_{i} = -\frac{1}{2} \operatorname{Re} \left[\vec{E}_{i}^{*} \wedge \vec{H}_{i} \cdot \vec{e}_{y} \right] = -\frac{1}{2} \operatorname{Re} \left[\vec{H}_{i} \wedge \vec{e}_{y} \cdot \vec{E}_{i}^{*} \right]$$
$$I_{r} = \frac{1}{2} \operatorname{Re} \left[\vec{E}_{r}^{*} \wedge \vec{H}_{r} \cdot \vec{e}_{y} \right] = -\frac{1}{2} \operatorname{Re} \left[\vec{H}_{r} \wedge \vec{e}_{y} \cdot \vec{E}_{r}^{*} \right]$$
$$I_{t} = -\frac{1}{2} \operatorname{Re} \left[\vec{E}_{t}^{*} \wedge \vec{H}_{t} \cdot \vec{e}_{y} \right] = -\frac{1}{2} \operatorname{Re} \left[\vec{H}_{t} \wedge \vec{e}_{y} \cdot \vec{E}_{t}^{*} \right]$$

onde $\vec{e_y}$ é o versor da normal ao plano de separação. A continuidade do campo magnético, $\vec{H_i} + \vec{H_r} = \vec{H_t}$ permite eliminar o campo $\vec{H_t}$ para se obter:

$$I_i - I_r - I_t = -\frac{1}{2} \operatorname{Re} \left[\vec{H}_i \wedge \vec{e}_y \cdot \left(\vec{E}_i^* - \vec{E}_r^* - \vec{E}_t^* \right) \right]$$

Ora, o campo magnético é, para estas componentes, perpendicular ao plano de incidência (i.e., alinha segundo z), pelo que $\vec{H} \wedge \vec{e_y} = -H\vec{e_x}$ para cada uma das ondas acima. Assim:

$$I_{i} - I_{r} - I_{t} = \frac{1}{2} \operatorname{Re} \left[H_{i} \left(\vec{E}_{i}^{*} - \vec{E}_{t}^{*} \right)_{x} + H_{r} \left(\vec{E}_{r}^{*} - \vec{E}_{t}^{*} \right)_{x} \right]$$

Ora as componentes tangenciais (i.e., segundo x) do campo elétrico são contínuas, pelo que (FIGURA 1):

$$I_i - I_r - I_t = \frac{1}{2} \operatorname{Re} \left[H_i \left(\vec{E}_r^* \right)_x + H_r \left(\vec{E}_i^* \right)_x \right] = \frac{1}{2} \operatorname{Re} \left[H_i E_r^* - H_r E_r^* \right] \cos \theta_i$$

Mas para a onda incidente tem-se $H_i=rac{k^{(i)}E_i}{\omega\mu_0}$ e, do mesmo modo, para a onda refletida. Assim:

$$I_i - I_r - I_t = \frac{k^{(i)}}{2\omega\mu_0} \operatorname{Re}\left[E_i E_r^* - E_r E_i^*\right] \cos\theta_i = 0$$

B) Para as componentes perpendiculares, o raciocínio é semelhante ao anterior. Tem-se:

$$I_i - I_r - I_t = -\frac{1}{2} \operatorname{Re} \left[\vec{E}_i^* \wedge \vec{H}_i + \vec{E}_r^* \wedge \vec{H}_r - \vec{E}_t^* \wedge \vec{H}_t \right] \cdot \vec{e}_y$$

O campo magnético, contínuo através do plano de separação, permite escrever:

$$I_i - I_r - I_t = -\frac{1}{2} \operatorname{Re} \left[\left(\vec{E}_i^* - \vec{E}_t^* \right) \wedge \vec{H}_i \cdot \vec{e}_y + \left(\vec{E}_r^* - \vec{E}_t^* \right) \wedge \vec{H}_r \cdot \vec{e}_y \right] =$$
$$= -\frac{1}{2} \operatorname{Re} \left[\vec{e}_y \wedge \left(\vec{E}_i^* - \vec{E}_t^* \right) \cdot \vec{H}_i + \vec{e}_y \wedge \left(\vec{E}_r^* - \vec{E}_t^* \right) \cdot \vec{H}_r \right]$$

Para estas componentes, os campos elétricos têm a direcção z, de modo que:

$$I_{i} - I_{r} - I_{t} = -\frac{1}{2} \operatorname{Re} \left[(E_{i}^{*} - E_{t}^{*}) \left(\vec{H}_{i} \right)_{x} + (E_{r}^{*} - E_{t}^{*}) \left(\vec{H}_{r} \right)_{x} \right] = -\frac{1}{2} \operatorname{Re} \left[E_{r}^{*} H_{i} - E_{i}^{*} H_{r} \right] \cos \theta_{i}$$

O penúltimo termo resulta da continuidade das componentes tangenciais do campo elétrico; para o último termo, ver FIGURA 3. Ora, para as ondas incidente e refletida, é $H = \frac{k^{(i)}}{\omega \mu_0} E$, obtendo-se, finalmente:

$$I_{i} - I_{r} - I_{t} = -\frac{k^{(i)}}{2\omega\mu_{0}} \operatorname{Re}\left[E_{r}^{*}E_{i} - E_{r}E_{i}^{*}\right]\cos\theta_{i} = 0$$

REFERÊNCIAS

¹LAGE, E., <u>Ondas eletromagnéticas</u>, Rev. Ciência Elem, V11(2):027. (2023). DOI: <u>10.24927/rce2023.027</u>. ²LAGE, E., <u>Ondas</u>, Rev. Ciência Elem, V8(1):016. (2020). DOI: <u>10.24927/rce2020.016</u>.