Tabela de frequências para dados de tipo qualitativo

Se os dados são de tipo qualitativo, na tabela de frequências a informação é organizada, de um modo geral, em 3 colunas: coluna das categorias ou classes – onde se indicam as categorias observadas para a variável em estudo; coluna das frequências absolutas – onde se regista o total de elementos da amostra que pertencem a cada categoria e coluna das frequências relativas – onde se coloca, para cada categoria, a sua frequência relativa. Nesta última coluna, as frequências relativas podem ser substituídas pelas percentagens.

Por exemplo, a seguinte amostra que resultou de observar a variável “Cor dos olhos” em 20 alunos de uma turma

Castanhos Pretos Castanhos Azuis Castanhos Castanhos Pretos Castanhos Verdes Castanhos
Pretos Castanhos Azuis Castanhos Castanhos Pretos Pretos Castanhos Pretos Pretos

pode ser resumida na seguinte tabela de frequências:

Categoria Frequência absoluta Frequência relativa
Castanhos 10 0,50
Pretos 7 0,35
Azuis 2 0,10
Verdes 1 0,05
Total 20 1,00

Tabela de frequências para dados de tipo quantitativo discreto

Se os dados são de natureza quantitativa discreta, as classes são os diferentes valores que surgem no conjunto dos dados. Na tabela de frequências para estes dados a informação é organizada, no mínimo, em 3 colunas: coluna das classes – onde se indicam todos os valores distintos que surgem na amostra, que representamos por Xi; coluna das frequências absolutas – onde se regista o total de elementos da amostra que pertencem a cada classe (ou número de vezes que cada valor xi; surge na amostra) e coluna das frequências relativas (ou percentagens).

A tabela de frequências pode ainda incluir, mais 2 colunas: a coluna das frequências absolutas acumuladas – onde, para cada classe, se coloca a soma da frequência absoluta observada nessa classe com as frequências absolutas observadas nas classes anteriores e a coluna das frequências relativas acumuladas – onde, para cada classe, se coloca a soma da frequência relativa observada nessa classe com as frequências relativas observadas nas classes anteriores. Esta coluna é bastante útil para o cálculo de algumas medidas, como a mediana e os quartis.

Por exemplo, a seguinte amostra que resultou de observar a variável Número de irmãos em 20 alunos de uma turma


12101102311102310022


pode ser resumida na seguinte tabela de frequências:

Classe Frequência absoluta Frequência relativa % Frequência absoluta acumulada Frequência relativa acumulada %
0 5 25 5 25
1 8 40 13 65
2 5 25 18 90
3 2 10 20 100
Total 20 100

A partir da tabela anterior verifica-se que a mediana dos dados é 1, o quartil inferior é 0,5 e o quartil superior é 2.

Convém salientar que as colunas referentes às frequências acumuladas só fazem sentido em tabelas de frequências onde a variável em estudo se possa ordenar ( no exemplo da tabela de frequências para dados de tipo qualitativo, apresentado anteriormente, não tem sentido considerar as frequências acumuladas).


Tabela de frequências para dados de tipo quantitativo contínuo

Se os dados são de natureza quantitativa contínua, consideram-se classes na forma de intervalos. Sempre que possível estes intervalos devem ter a mesma amplitude.

Na tabela de frequências para dados quantitativos contínuos a informação é organizada, no mínimo, em 3 colunas: coluna das classes – onde se identificam os intervalos (classes) em que se subdividiu a amostra; coluna das frequências absolutas – onde se regista o total de elementos da amostra que pertencem a cada classe e coluna das frequências relativas (ou percentagens).

A tabela de frequências anterior pode ainda incluir mais 3 colunas: coluna do representante da classe – onde se indica o ponto médio de cada intervalo de classe (usualmente escolhido para representante da classe); coluna das frequências absolutas acumuladas e coluna das frequências relativas acumuladas.

Perante uma amostra de dados contínuos, a metodologia para a organização dos dados não é única e pressupõe que se tomem algumas decisões no que respeita

  • o número de classes
  • a amplitude das classes
  • o valor a partir do qual se começam a construir as classes

Para obter o número k de classes, um processo que pode ser seguido consiste em começar por utilizar a regra de Sturges. Uma vez obtido o número k de classes, considera-se para amplitude de classe h, um valor arredondado, por excesso, do que se obtém dividindo a amplitude da amostra por k.

Constroem-se as classes como intervalos semiabertos, fechados à esquerda e abertos à direita (ou vice-versa, como em PESTANA e VELOSA (2010), página 130), sendo o extremo esquerdo do primeiro intervalo o mínimo da amostra.


Considere-se a seguinte amostra que resultou de observar a variável Altura em 30 alunos de uma turma

164166170170147131151148173143180167166162160

180148158173150159174149158171140164158167160


Utilizando a metodologia descrita, pode-se obter a seguinte tabela de frequências:

Classes Ponto médio Frequência absoluta Frequência relativa % Frequência absoluta acumulada Frequência relativa acumulada
[131;141[ 136 2 7 2 7
[141;151[ 146 6 20 8 27
[151;161[ 156 7 23 15 50
[161;171[ 166 9 30 24 80
[171;181[ 176 6 20 30 100
30 100

Ver