Simbolicamente:

\(\displaystyle \lim_{n\to + \infty}u_n=\ell \)

significa

\(\forall \epsilon>0 \quad \exists m\in \mathbb{N}: \quad \ell-\epsilon< u_n <\ell+\epsilon, \quad\forall n\geq m\)

ou, de forma equivalente,

\(\forall \epsilon>0 \quad \exists m\in \mathbb{N}: u_{n} \in \quad ]\, \ell - \epsilon, \ell + \epsilon \,[, \quad\forall n\geq m\)


Nota:

Quando uma sucessão de números \(\displaystyle u_n \) converge para um número real \( \displaystyle \ell\) pode escrever-se, abreviadamente, \(\displaystyle \lim_{}u_n=\ell\) ou \(\displaystyle \lim_{n} u_n=\ell\) ou \(\displaystyle \lim_{n\to \infty} u_n=\ell\) .


Exemplo:

A sucessão de termo geral \( u_{n} = \frac{1}{n}\) é convergente para zero quando \(\displaystyle n\to + \infty \), como se ilustra na aplicação interativa