Referenciais
📧 , 📧
- * Faculdade de Ciências da Universidade do Porto
- ɫ CMUP/ Universidade do Porto
Referência Tavares, J.N., Geraldo, A., (2017) Referenciais, Rev. Ciência Elem., V5(2):072
DOI http://doi.org/10.24927/rce2017.072
Palavras-chave Referenciais, referencial cartesiano, ortogonal, normado, quadrantes, octantes
Resumo
O referencial \(\mathcal{R}=(O,U)\), permite estabelecer uma correspondência bijectiva entre os pontos da reta \(r\) e o conjunto dos números reais. De facto, dado um ponto qualquer \(A\in r\), o vector \(\overrightarrow{OA}\) é colinear com \(\overrightarrow{OU}\) e, por isso, existe um e só número real \(a\in\mathbb{R}\) tal que \(\overrightarrow{OA} =a\ \overrightarrow{OU} \). Este número \(a\) é a chamada coordenada (afim) de \(A\) relativamente ao referencial \(\mathcal{R}\). Em particular, a coordenada do ponto \(O\) é \(0\) e a coordenada do ponto \(U\) é \(1\) (veja o applet. Comece por seleccionar \(U\) e depois mova o ponto \(A\). A coordenada de \(A\) é o número \(a\) indicado no applet, aproximado às 3 casas decimais).
As duas retas orientadas são denominadas de eixos do referencial. Em particular, à reta orientada pelo vetor \(\overrightarrow{OI}\) chamamos de eixo das abcissas ou eixo dos \(xx\) e à reta orientada pelo vetor \(\overrightarrow{OJ}\) chamamos de eixo das ordenadas ou eixo dos \(yy\). Na figura 1 podemos ver a indicação de cada um dos eixos coordenados e da origem do referencial representado.
Um referencial cartesiano no plano serve para estudar geometria plana com ajuda de álgebra, isto é, estudar Geometria Analítica em duas dimensões (2D).
As figuras do plano, tais como, retas, curvas, polígonos, e outros lugares geométricos, podem então ser descritos por (sistemas de) equações ou inequações nas variáveis \(x\) e \(y\), onde \(P(x,y)\) designa um ponto genérico desse lugar.
Interseção com o eixo das abcissas: Como já tínhamos concluído o gráfico de uma função exponencial não interseta o eixo das abcissas uma vez que esta função não tem zeros.
Podemos notar que \(f(1)=a^1=a\) e dai concluir que o gráfico da função exponencial \(y=a^x\) passa pelo ponto \((1,a)\).
Ortogonal e normado
Quando no plano \(\mathbb{R}^2\) está definida uma estrutura Euclideana e portanto as noções de ortogonalidade, ângulo, comprimento, etc. faz sentido falar em referenciais ortogonais e/ou normados.
Referencial Cartesiano no espaço
Um referencial cartesiano (afim) no espaço é um sistema constituído por 4 pontos \(O,I,J,K\) não colineares. \(O\) diz-se a origem do referencial. Os outros três pontos determinam três retas orientadas, respetivamente pelos vectores \(\overrightarrow{OI}\), \(\overrightarrow{OJ}\) e \(\overrightarrow{OK}\). A orientação de cada uma dessas retas é positiva quando são percorridas de \(O\) para \(I\), de \(O\) para \(J\) e de \(O\) para \(K\), respetivamente, e negativa nos outros casos. Dado um ponto \(P\) do espaço, por este ponto fazemos passar um plano paralelo a cada um dos eixos orientados. Encontramos assim os pontos \(A\), \(B\) e \(C\), pontos de intersecção dos três planos com os eixos orientados. Estes pontos definem três vetores, o vetor \(\overrightarrow{OA}\) colinear com \(\overrightarrow{OI}\), \(\overrightarrow{OA}=x \, \overrightarrow{OI}\), \(x \in \mathbb{R}\), o vetor \(\overrightarrow{OB}\) colinear com \(\overrightarrow{OJ}\), \(\overrightarrow{OB}=y \, \overrightarrow{OJ}\), com \(y \in \mathbb{R}\) e o vetor \(\overrightarrow{OC}\) colinear com \(\overrightarrow{OK}\), \(\overrightarrow{OC}=z \, \overrightarrow{OK}\), com \(z \in \mathbb{R}\). Os números \(x\), \(y\) e \(z\) são então as coordenadas do ponto \(P\) relativamente ao referencial \(\mathcal{R}=(O,I,J,K)\). A cada ponto \(P\) do espaço associamos, de forma unívoca, o terno de coordenadas relativas a esse sistema de eixos (ou referencial). \[P \quad \longleftrightarrow \quad (x,y,z) \in \mathbb{R}^3\] \(x\) diz-se a abcissa, \(y\) a ordenada e \(z\) a cota do ponto \(P\). Escrevemos então:
|
Da mesma forma que no plano, no espaço as três retas orientadas são também denominadas de eixos do referencial. A reta orientada por \(\overrightarrow{OI}\) é denominada de eixo das abcissas, a reta orientada por \(\overrightarrow{OJ}\) será o eixo das ordenadas e a reta orientada por \(\overrightarrow{OK}\) é chamada de eixo das cotas ou eixo dos \(zz\). Na figura 3 estão indicados cada um dos eixos coordenados do referencial representado.
Um referencial cartesiano no espaço serve para estudar geometria espacial com ajuda de álgebra, isto é, estudar Geometria Analítica em três dimensões (3D).
As figuras do espaço, tais como, retas, planos, curvas, superfícies, poliedros, e outros lugares geométricos, podem então ser descritos por (sistemas de) equações ou inequações nas variáveis \(x\), \(y\) e \(z\), onde \(P(x,y,z)\) designa um ponto genérico desse lugar.
Quadrantes e Octantes
Os eixos de um referencial cartesiano dividem o plano em quatro partes aos quais chamamos de quadrantes, existe por isso quatro quadrantes. A figura seguinte ilustra esse divisão.
Como se pode verificar pela figura ao lado, no \(1º\) e \(4º\) quadrantes as coordenadas têm o mesmo sinal, ou são ambas positivas (\(1ºQ\)) ou ambas negativas (\(4ºQ\)). Já no \(2º\) e \(3º\) quadrantes as coordenadas têm sinais diferentes, no \(2ºQ\) as abcissas são negativas e as ordenadas positivas já no \(3ºQ\) é o contrário. |
O espaço é também dividido em partes pelos eixos coordenados, às quais chamamos de octantes, existem assim oito octantes. A figura 5 ilustra essa divisão.
O sinal das coordenadas dos pontos em cada um dos octantes pode ser resumido na seguinte tabela:
Octante | \((x,y,z)\) |
---|---|
\(1º\) | \((+,+,+)\) |
\(2º\) | \((-,+,+)\) |
\(3º\) | \((-,-,+)\) |
\(4º\) | \((+,-,+)\) |
\(5º\) | \((+,+,-)\) |
\(6º\) | \((-,+,-)\) |
\(7º\) | \((-,-,-)\) |
\(8º\) | \((+,-,-)\) |
Referências
- 1 BARUK, Stella (1992) Dictionnaire de Mathemátiques Elémentaires, Editions du Seuil, traduzido por SILVA, Maria do Céu, MIRRA, Maria Elisa, RIBEIRO, Maria de Fátima, 2005, Edições Afrontamento.
Este artigo já foi visualizado 7110 vezes.