O RNA, como o DNA, é uma macromolécula formada por uma cadeia polinucleotídica simples, cujos nucleótidos são compostos por uma base azotada, uma pentose (açúcar com 5 carbonos) e um grupo fosfato. RNA e DNA distinguem-se em alguns aspetos importantes:

- o RNA possui geralmente apenas uma cadeia enquanto o DNA tem na maior parte dos casos dupla cadeia);

- os nucleótidos de RNA contém uma ribose (o DNA contém um desoxirribose);

- o RNA tem uma base azotada pirimídica diferente o uracilo em substituição da timina, que só ocorre no DNA;

- o uracilo não forma ligações por pontes de hidrogénio com outras bases.


Figura 1. Estrutura química da molécula de RNA
Figura 1. Estrutura química da molécula de RNA

Nas células podemos encontrar três principais tipos de RNA:

- RNA mensageiro (mRNA)

- RNA ribossómico (rRNA)

- RNA de transferência (tRNA)

Embora a informação genética necessária para a síntese de proteínas esteja ‘armazenada’ em longas cadeias de ácidos nucleicos (como o DNA e o RNA), a quase totalidade das atividades biológicas é mediada por proteínas. A síntese de proteínas é, por isso, um fenómeno fundamental para o funcionamento dos organismos, e o RNA ocorre em formas diferentes que cooperam nesta síntese:


  • RNA mensageiro (mRNA) – transporta a informação genética que é copiada (transcrita) do DNA sob a forma de sequências de 3 bases (codão) sendo que cada codão corresponde a determinado aminoácido; à passagem do código genético do DNA para o mRNA chama-se “transcrição”.
  • RNA transferência (tRNA) – Cada tRNA transporta um aminoácido e contém uma sequência de três nucleótidos que é complementar a um codão na sequência de RNA (anti-codão). O tRNA transporta até à extremidade da cadeia polipeptídica em formação um novo aminoácido a ser incorporado na proteína nascente de acordo com o codão presente na cadeia de mRNA; à passagem da informação genética contida no mRNA para a sequência de proteína dá-se o nome de “tradução”.
  • RNA ribossómico (rRNA) – este tipo de RNA associa-se a proteínas para formar os ribossomas. Estas estruturas complexas, que se deslocam ao longo das moléculas de mRNA, catalizam a ligação dos aminoácidos para formar a cadeia polipeptídica. É nos ribossomas que se dá a tradução.

A síntese de mRNA é catalisada por uma enzima, a RNA polimerase, que usa o DNA como molde, num processo que se designa por transcrição. Nas células eucariotas, o mRNA resultante da transcrição denomina-se pré-mRNA, sai do núcleo para o citoplasma, onde se liga aos ribossomas para ser traduzido tradução) numa determinada sequência proteica com a ajuda do tRNA. Nas células procariotas, que não possuem um núcleo independente, o mRNA pode ligar-se aos ribosomas ainda durante a transcrição. A sequência codificante do mRNA determina a sequência de aminoácidos na proteína que é sintetizada.

No entanto, nem todos os RNA irão codificar proteínas. Com efeito, as duas outras classes de RNA já referidas, tRNA e rRNA são RNAs não codificantes que participam no processo de tradução. O tRNA (fig.2) é uma pequena cadeia de RNA com cerca de 80 nucleótidos que transfere um determinado aminoácido para a cadeia polipeptídica em crescimento, nos ribossomas, durante o processo de tradução. O anticodão é uma sequência de três bases que se liga à sequência complementar no mRNA por pontes de hidrogénio. O tRNA embora seja formado por uma cadeia simples de nucleótidos, dobra-se sobre si em forma de trevo, e em determinados locais estabelecem-se ligações por pontes de hidrogénio entre bases complementares (zonas de cadeia dupla).


As moléculas de tRNA têm algumas características comuns a todas as moléculas de RNA:

- a extremidade 5’ é fosforilada

- a sequência da extremidade 3’ é sempre CCA, onde o aminoácido se irá ligar


Figura 2. Estrutura do tRNA
Figura 2. Estrutura do tRNA

O rRNA representa a maior parte do RNA que se encontra na célula. As moléculas de rRNA associam-se a proteínas no citoplasma formando ribonucleoproteínas (RNP) que se associam para formar os ribossomas, organitos citoplasmáticos que, como referido acima, executam a síntese proteica.

Recentemente foram descobertas novas funções para as moléculas de RNA, tanto na regulação como na resistência a vírus através de um mecanismo designado por a interferência de RNA (RNAi). Este processo é desencadeado por pequenas moléculas de RNA provenientes de RNA viral, de sequências codificadas no genoma (microRNA) ou de sequências de mRNA parcialmente digeridas. A presença destas pequenas moléculas de RNA geram pequenos fragmentos de interferência de RNA (siRNA) capazes de silenciar programas genéticos inteiros e de mediar a resistência a vírus. Embora grande número de aspetos da Biologia do RNA de interferência estejam neste momento em estudo, a sua relevância originou já um prémio Nobel (1) e prevê-se uma enorme quantidade de aplicações em medicina e em outras áreas da Biologia.